Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Subcell Biochem ; 102: 99-112, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36600131

RESUMO

The proteasome is a multi-subunit proteolytic complex that functions to degrade normal proteins for physiological regulation and to eliminate abnormal proteins for cellular protection. Generally, the proteasome targets substrate proteins that are marked by attachment of multiple ubiquitin molecules. In various types of cells in an organism, damage to proteins occurs both from internal sources such as reactive oxygen species and from external ones such as UV radiation from the sun. The proteasome functions to protect the cells by degrading damaged proteins. With ageing, however, the capacity of the proteasome to degrade damaged proteins is reduced as indicated by evidence gathered by many studies. Studies on ageing in muscle, skin, and brain show that with age catalytic activity of the proteasome is decreased and the expression of proteasome subunits is altered. Age-related accumulation of damaged or misfolded proteins causes further reduction of proteasome activity. Abnormal proteins also accumulate as a result of age-related neurodegenerative diseases. Deficits in proteasome activity might be responsible for accumulation of protein aggregates and thus contribute to the pathology. Results from several studies suggest a link between the proteasome and longevity. This chapter reviews the various ways in which the proteasome is associated with the ageing process and examines evidence gathered from investigations on cultured cells, model organisms, and humans.


Assuntos
Envelhecimento , Complexo de Endopeptidases do Proteassoma , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Envelhecimento/metabolismo , Proteínas/metabolismo , Ubiquitina/metabolismo , Proteólise
2.
Int J Mol Sci ; 21(22)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198401

RESUMO

Maintenance of long-term synaptic plasticity requires gene expression mediated by cAMP-responsive element binding protein (CREB). Gene expression driven by CREB can commence only if the inhibition by a transcriptional repressor activating transcription factor 4 (ATF4; also known as CREB2) is relieved. Previous research showed that the removal of ATF4 occurs through ubiquitin-proteasome-mediated proteolysis. Using chemically induced hippocampal long-term potentiation (cLTP) as a model system, we investigate the mechanisms that control ATF4 degradation. We observed that ATF4 phosphorylated at serine-219 increases upon induction of cLTP and decreases about 30 min thereafter. Proteasome inhibitor ß-lactone prevents the decrease in ATF4. We found that the phosphorylation of ATF4 is mediated by cAMP-dependent protein kinase. Our initial experiments towards the identification of the ligase that mediates ubiquitination of ATF4 revealed a possible role for ß-transducin repeat containing protein (ß-TrCP). Regulation of ATF4 degradation is likely to be a mechanism for determining the threshold for gene expression underlying maintenance of long-term synaptic plasticity and by extension, long-term memory.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Perfilação da Expressão Gênica , Potenciação de Longa Duração , Plasticidade Neuronal , Animais , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Transducina/metabolismo , Ubiquitinação
3.
Front Aging Neurosci ; 11: 324, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31866849

RESUMO

The ubiquitin-proteasome pathway (UPP) has multiple roles in the normal nervous system, including the development of synaptic connections and synaptic plasticity. Research over the past several years has indicated a role for the UPP in aging without any overt pathology in the brain. In addition, malfunction of the UPP is implicated in Alzheimer's disease (AD) and dementia associated with it. In this mini review article, we assess the literature on the role of protein degradation by the UPP in aging and in AD with special emphasis on dysregulation of the UPP and its contribution to cognitive decline and impairment.

4.
Learn Mem ; 26(9): 307-317, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31416904

RESUMO

Formation of long-term synaptic plasticity that underlies long-term memory requires new protein synthesis. Years of research has elucidated some of the transcriptional and translational mechanisms that contribute to the production of new proteins. Early research on transcription focused on the transcription factor cAMP-responsive element binding protein. Since then, other transcription factors, such as the Nuclear Receptor 4 family of proteins that play a role in memory formation and maintenance have been identified. In addition, several studies have revealed details of epigenetic mechanisms consisting of new types of chemical alterations of DNA such as hydroxymethylation, and various histone modifications in long-term synaptic plasticity and memory. Our understanding of translational control critical for memory formation began with the identification of molecules that impinge on the 5' and 3' untranslated regions of mRNAs and continued with the appreciation for local translation near synaptic sites. Lately, a role for noncoding RNAs such as microRNAs in regulating translation factors and other molecules critical for memory has been found. This review describes the past research in brief and mainly focuses on the recent work on molecular mechanisms of transcriptional and translational regulation that form the underpinnings of long-term synaptic plasticity and memory.


Assuntos
Regulação da Expressão Gênica , Memória/fisiologia , Plasticidade Neuronal/genética , Biossíntese de Proteínas , Transcrição Gênica , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Epigênese Genética/genética , Humanos , RNA Mensageiro/genética , RNA não Traduzido/genética
5.
Neurosci Lett ; 687: 31-36, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30219486

RESUMO

Proteolysis by the ubiquitin-proteasome pathway has pleiotropic effects on both induction and maintenance of long-term synaptic plasticity. In this study, we examined the effect of proteasome inhibition on signaling to the nucleus during late-phase long-term potentiation. When a subthreshold L-LTP induction protocol was used, proteasome inhibition led to a significant increase in phosphorylated CREB (pCREB) in the nucleus. Inhibitors of cAMP-dependent protein kinase/protein kinase A, extracellular signal-regulated kinase and cGMP-dependent protein kinase/protein kinase G all blocked the proteasome-inhibition-mediated increase in nuclear pCREB after subthreshold stimulation. These results lay the groundwork for understanding a novel role for the proteasome in limiting signaling to the nucleus in the absence of adequate synaptic stimulation.


Assuntos
Núcleo Celular/metabolismo , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais/fisiologia , Animais , Núcleo Celular/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Inibidores de Proteassoma/farmacologia , Transdução de Sinais/efeitos dos fármacos
6.
J Cell Physiol ; 233(11): 9015-9030, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29923313

RESUMO

Human hair dermal papilla (DP) cells are specialized mesenchymal cells that play a pivotal role in hair regeneration and hair cycle activation. The current study aimed to first develop three-dimensional (3D) DP spheroids (DPS) with or without a silk-gelatin (SG) microenvironment, which showed enhanced DP-specific gene expression, resulting in enhanced extracellular matrix (ECM) production compared with a monolayer culture. We tested the feasibility of using this DPS model for drug screening by using minoxidil, which is a standard drug for androgenic alopecia. Minoxidil-treated DPS showed enhanced expression of growth factors and ECM proteins. Further, an attempt has been made to establish an in vitro 3D organoid model consisting of DPS encapsulated by SG hydrogel and hair follicle (HF) keratinocytes and stem cells. This HF organoid model showed the importance of structural features, cell-cell interaction, and hypoxia akin to in vivo HF. The study helped to elucidate the molecular mechanisms to stimulate cell proliferation, cell viability, and elevated expression of HF markers as well as epithelial-mesenchymal crosstalks, demonstrating high relevance to human HF biology. This simple in vitro DP organoid model system has the potential to provide significant insights into the underlying mechanisms of HF morphogenesis, distinct molecular signals relevant to different stages of the hair cycle, and hence can be used for controlled evaluation of the efficacy of new drug molecules.


Assuntos
Folículo Piloso/crescimento & desenvolvimento , Cabelo/crescimento & desenvolvimento , Células-Tronco Mesenquimais/citologia , Organoides/crescimento & desenvolvimento , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Derme/citologia , Derme/crescimento & desenvolvimento , Transição Epitelial-Mesenquimal/genética , Feminino , Cabelo/citologia , Folículo Piloso/citologia , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Organoides/citologia , Regeneração/genética
7.
Brain Res ; 1680: 46-53, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29246764

RESUMO

Aging in humans and animals is associated with gradual and variable changes in some cognitive functions, but what causes them and explains individual variations remains unclear. Hydration decreases with aging but whether dehydration contributes to cognitive dysfunction is not known. The brain hydration of aging mice was determined by colloidosmotic-pressure titration. Dehydration increased with age from ∼76 mmHg at 6 weeks to ∼105 mmHg at 40 weeks, or a progressive ∼10 percent loss of brain water but seemed to level off afterward. When we adjusted dehydration in hippocampal slices of <8-week-old mice to the levels seen in mice 40 weeks and older, their basal synaptic responses were amplified at all stimulus voltages tested, but induction of late-phase long-term potentiation was impaired. Our results document progressive brain dehydration with age in inbred mice to levels at which in vitro synaptic plasticity appears dysregulated. They also suggest that dehydration contributes to some of the changes in synaptic plasticity observed with aging, possibly due to adjustments in neuronal excitation mechanisms.


Assuntos
Envelhecimento/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/fisiologia , Estado de Hidratação do Organismo/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Modelos Estatísticos , Técnicas de Patch-Clamp , Polietilenoglicóis/farmacologia
9.
Neurobiol Learn Mem ; 138: 98-110, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27614141

RESUMO

Protein degradation has many critical functions in the nervous system such as refinement of synaptic connections during development and synaptic plasticity and memory in the adult organisms. A major cellular machinery of proteolysis is the ubiquitin-proteasome pathway (UPP). The UPP precisely regulates proteolysis by covalently attaching ubiquitin, a small protein, to substrates through sequential enzymatic reactions and the proteins marked with the ubiquitin tag are degraded by complex containing many subunits called the proteasome. Research over the years has shown a role for the UPP in regulating presynaptic and postsynaptic proteins critical for neurotransmission and synaptic plasticity. Studies have also revealed a role for the UPP in various forms of memory. Mechanistic investigations suggest that the function of the UPP in neurons is not homogenous and is subject to local regulation in different neuronal sub-compartments. In both invertebrate and vertebrate model systems, local roles have been found for enzymes that attach ubiquitin to substrate proteins as well as for enzymes that remove ubiquitin from substrates. The proteasome also has disparate functions in different parts of the neuron. In addition to the UPP, proteolysis by the lysosome and autophagy play a role in synaptic plasticity and memory. This review details the functions of proteolysis in synaptic plasticity and summarizes the findings on the connection between proteolysis and memory mainly focusing on the UPP including its local roles.


Assuntos
Memória/fisiologia , Plasticidade Neuronal/fisiologia , Proteólise , Sinapses/fisiologia , Animais , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo
10.
Biomol Concepts ; 7(4): 215-27, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27522625

RESUMO

The proteasome is a structural complex of many proteins that degrades substrates marked by covalent linkage to ubiquitin. Many years of research has shown a role for ubiquitin-proteasome-mediated proteolysis in synaptic plasticity and memory mainly in degrading synaptic, cytoplasmic and nuclear proteins. Recent work indicates that the proteasome has wider proteolytic and non-proteolytic roles in processes such as histone modifications that affect synaptic plasticity and memory. In this review, we assess the evidence gathered from neuronal as well as non-neuronal cell types regarding the function of the proteasome in positive or negative regulation of posttranslational modifications of histones, such as acetylation, methylation and ubiquitination. We discuss the critical roles of the proteasome in clearing excess histone proteins in various cellular contexts and the possible non-proteolytic functions in regulating transcription of target genes. In addition, we summarize the current literature on diverse chromatin-remodeling machineries, such as histone acetyltransferases, deacetylates, methyltransferases and demethylases, as targets for proteasomal degradation across experimental models. Lastly, we provide a perspective on how proteasomal regulation of histone modifications may modulate synaptic plasticity in the nervous system.


Assuntos
Epigênese Genética , Epigenômica , Histonas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Metilação de DNA , Epigenômica/métodos , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Plasticidade Neuronal , Complexo de Endopeptidases do Proteassoma/química , Ligação Proteica , Proteólise , Transdução de Sinais , Transcrição Gênica , Ubiquitina/metabolismo
11.
Front Psychiatry ; 7: 26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973546

RESUMO

The Regulator of G protein signaling 4 (RGS4) gene is a candidate susceptibility gene for schizophrenia (SCZ). Previous studies showed that the mRNA level of the longest splice variant RGS4-1 was decreased in the dorsolateral prefrontal cortex (DLPFC) of SCZ patients compared with healthy controls. In this pilot study, we examined the possible mechanisms of RGS4-1 mRNA reduction in SCZ. We genotyped SNP1 (rs10917670), rs2661347, SNP4 (rs951436), SNP7 (rs951439), SNP18 (rs2661319), and rs10799897 (SNP9897) and tested the methylation status of CpG islands of the RGS4 gene in the postmortem DLPFC samples obtained from subjects with SCZ and bipolar disorder as well as healthy controls. RGS4-1 mRNA level was associated with five SNPs (SNP1, rs2661347, SNP4, SNP7, and SNP18) and their haplotypes but not with SNP9897. In addition, this study revealed that RGS4-1 mRNA was low in subjects with specific genotypes of SNP1, rs2661347, SNP4, SNP7, and SNP18. Lower RGS4-1 mRNA expression in the DLPFC of SCZ is associated with SNPs in the 5' regulatory region of the RGS4 gene but not with the methylation status of its CpG islands.

12.
ACS Chem Neurosci ; 6(5): 695-700, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25775404

RESUMO

Protein degradation plays a critical role in synaptic plasticity, but the molecular mechanisms are not well understood. Previously we showed that proteasome inhibition enhances the early induction part of long-term synaptic plasticity for which protein synthesis is essential. In this study, we tested the effect of proteasome inhibition on protein synthesis using a chemically induced long-lasting synaptic plasticity (cLTP) in the murine hippocampus as a model system. Our metabolic labeling experiments showed that cLTP induction increases protein synthesis and proteasome inhibition enhances the amount of newly synthesized proteins. We then found that amyloid beta (Aß), a peptide contributing to Alzheimer's pathology and impairment of synaptic plasticity, blocks protein synthesis increased by cLTP. This blockade can be reversed by prior proteasome inhibition. Thus, our work reveals interactions between protein synthesis and protein degradation and suggests a possible way to exploit protein degradation to rescue adverse Aß effects on long-term synaptic plasticity.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Biossíntese de Proteínas/fisiologia , Peptídeos beta-Amiloides/metabolismo , Animais , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Biossíntese de Proteínas/efeitos dos fármacos , Ensaio de Radioimunoprecipitação
13.
Neurosci Lett ; 591: 59-64, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25687290

RESUMO

Histone modifications, such as lysine methylation, acetylation and ubiquitination, are epigenetic tags that shape the chromatin landscape and regulate transcription required for synaptic plasticity and memory. Here, we show that transcription-promoting histone H3 trimethylated at lysine 4 (H3K4me3), histone H3 acetylated at lysine 9 and 14 (H3K9/14ac), and histone H2B monoubiquitinated at lysine 120 (H2BK120ub) are enhanced after the induction of long-lasting chemically-induced long-term potentiation (cLTP) in the murine hippocampus. While H3K4me3 and H3K9/14ac were transiently upregulated, H2BK120ub levels oscillated after cLTP induction. In addition, we present results showing that blocking the proteasome, a molecular complex specialized for targeted protein degradation, inhibited the upregulation of these epigenetic tags after cLTP. Thus, our study provides the initial steps toward understanding the role of the proteasome in regulating histone modifications critical for synaptic plasticity.


Assuntos
Histonas/metabolismo , Potenciação de Longa Duração , Complexo de Endopeptidases do Proteassoma/metabolismo , Acetilação , Animais , Masculino , Metilação , Camundongos , Transcrição Gênica , Ubiquitinação , Regulação para Cima
14.
Front Mol Neurosci ; 7: 96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25520617

RESUMO

The ubiquitin-proteasome pathway (UPP) of protein degradation has many roles in synaptic plasticity that underlies memory. Work on both invertebrate and vertebrate model systems has shown that the UPP regulates numerous substrates critical for synaptic plasticity. Initial research took a global view of ubiquitin-protein degradation in neurons. Subsequently, the idea of local protein degradation was proposed a decade ago. In this review, we focus on the functions of the UPP in long-term synaptic plasticity and discuss the accumulated evidence in support of the idea that the components of the UPP often have disparate local roles in different neuronal compartments rather than a single cell-wide function.

15.
Neurosci Lett ; 583: 199-204, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25263789

RESUMO

The ubiquitin-proteasome pathway is essential for long-term synaptic plasticity, but its exact roles remain unclear. Previously we established that proteasome inhibition increased the early, induction part of late-phase long-term potentiation (L-LTP) but blocks the late, maintenance part. Our prior work also showed that the proteasome modulates components of the mammalian target of rapamycin pathway for translation. In this study, we tested the possible role of the proteasome in regulating the cytoplasmic polyadenylation signaling required for translation during L-LTP. We found that a polyadenylation inhibitor cordycepin diminishes the enhancement of early L-LTP mediated by proteasome inhibition. Furthermore, blocking Aurora-A kinase and calcium-calmodulin-dependent kinase II reduces the increase in early L-LTP brought about by proteasome inhibition. Our results suggest a link between polyadenylation-mediated translational control and protein degradation during induction of long-term synaptic plasticity.


Assuntos
Citoplasma/metabolismo , Potenciação de Longa Duração , Poliadenilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Desoxiadenosinas/farmacologia , Técnicas In Vitro , Lactonas/farmacologia , Camundongos Endogâmicos C57BL , Inibidores de Proteassoma/farmacologia , Transdução de Sinais
16.
J Neurosci ; 34(9): 3171-82, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24573276

RESUMO

Proteolysis by the ubiquitin-proteasome pathway appears to have a complex role in synaptic plasticity, but its various functions remain to be elucidated. Using late phase long-term potentiation (L-LTP) in the hippocampus of the mouse as a model for long-term synaptic plasticity, we previously showed that inhibition of the proteasome enhances induction but blocks maintenance of L-LTP. In this study, we investigated the possible mechanisms by which proteasome inhibition has opposite effects on L-LTP induction and maintenance. Our results show that inhibiting phosphatidyl inositol-3 kinase or blocking the interaction between eukaryotic initiation factors 4E (eIF4E) and 4G (eIF4G) reduces the enhancement of L-LTP induction brought about by proteasome inhibition suggesting interplay between proteolysis and the signaling pathway mediated by mammalian target of rapamycin (mTOR). Also, proteasome inhibition leads to accumulation of translational activators in the mTOR pathway such as eIF4E and eukaryotic elongation factor 1A (eEF1A) early during L-LTP causing increased induction. Furthermore, inhibition of the proteasome causes a buildup of translational repressors, such as polyadenylate-binding protein interacting protein 2 (Paip2) and eukaryotic initiation factor 4E-binding protein 2 (4E-BP2), during late stages of L-LTP contributing to the blockade of L-LTP maintenance. Thus, the proteasome plays a critical role in regulating protein synthesis during L-LTP by tightly controlling translation. Our results provide novel mechanistic insights into the interplay between protein degradation and protein synthesis in long-term synaptic plasticity.


Assuntos
Potenciação de Longa Duração/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Animais , Estimulação Elétrica , Fator de Iniciação 4E em Eucariotos , Fator de Iniciação Eucariótico 4G , Hipocampo/citologia , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteassoma/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Sinapses/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
17.
J Biol Chem ; 288(37): 26879-86, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23897823

RESUMO

An eight-amino acid segment is known to be responsible for the marked difference in the rates of degradation of the EGF receptor (ErbB1) and ErbB2 upon treatment of cells with the Hsp90 inhibitor geldanamycin. We have scrambled the first six amino acids of this segment of the EGF receptor (EGFR), which lies in close association with the ATP binding cleft and the dimerization face. Scrambling these six amino acids markedly reduces EGFR stability, EGF-stimulated receptor dimerization, and autophosphorylation activity. Two peptides were synthesized as follows: one containing the wild-type sequence of the eight-amino acid segment, which we call Disruptin; and one with the scrambled sequence. Disruptin inhibits Hsp90 binding to the EGFR and causes slow degradation of the EGFR in two EGFR-dependent cancer cell lines, whereas the scrambled peptide is inactive. This effect is specific for EGFR versus other Hsp90 client proteins. In the presence of EGF, Disruptin, but not the scrambled peptide, inhibits EGFR dimerization and causes rapid degradation of the EGFR. In contrast to the Hsp90 inhibitor geldanamycin, Disruptin inhibits cancer cell growth by a nonapoptotic mechanism. Disruptin provides proof of concept for the development of a new class of anti-tumor drugs that specifically cause EGFR degradation.


Assuntos
Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Fragmentos de Peptídeos/farmacologia , Peptídeos/farmacologia , Animais , Antineoplásicos/farmacologia , Benzoquinonas/farmacologia , Células CHO , Linhagem Celular Tumoral , Cricetulus , Dimerização , Desenho de Fármacos , Receptores ErbB/farmacologia , Humanos , Lactamas Macrocíclicas/farmacologia , Mutagênese Sítio-Dirigida , Mutação , Fosforilação , Ligação Proteica
18.
Radiat Prot Dosimetry ; 150(1): 71-81, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21893521

RESUMO

Enrichment factor (EF) of elements including geo-accumulation indices for soil quality and principal component analysis (PCA) were used to identify the contributions of the origin of sources in the studied area. Results of (40)K, (137)Cs, (238)U and (232)Th including their decay series isotopes in the agricultural soil of Mansa and Bathinda districts in the state of Punjab were presented and discussed. The measured mean radioactivity concentrations for (238)U, (232)Th and (40)K in the agricultural soil of the studied area differed from nationwide average crustal abundances by 51, 17 and 43 %, respectively. The sequence of the EFs of radionuclides in soil from the greatest to the least was found to be (238)U > (40)K > (226)Ra > (137)Cs > (232)Th > (228)Ra. Even though the enrichment of naturally occurring radionuclides was found to be higher, they remained to be in I(geo) class of '0', indicating that the soil is uncontaminated with respect to these radionuclides. Among non-metals, N showed the highest EF and belonged to I(geo) class of '2', indicating that soil is moderately contaminated due to intrusion of fertiliser. The resulting data set of elemental contents in soil was also interpreted by PCA, which facilitates identification of the different groups of correlated elements. The levels of the (40)K, (238)U and (232)Th radionuclides showed a significant positive correlation with each other, suggesting a similar origin of their geochemical sources and identical behaviour during transport in the soil system.


Assuntos
Radiação de Fundo , Manufaturas/análise , Modelos Estatísticos , Monitoramento de Radiação/estatística & dados numéricos , Radioisótopos/análise , Poluentes Radioativos do Solo/análise , Agricultura , Baías/química , Simulação por Computador , Índia , Análise de Componente Principal , Doses de Radiação
19.
Neurochem Int ; 59(6): 787-803, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21884744

RESUMO

Memory for the mating male's pheromones in female mice is thought to require synaptic changes in the accessory olfactory bulb (AOB). Induction of this memory depends on release of glutamate in response to pheromonal exposure coincident with release of norepinephrine (NE) in the AOB following mating. A similar memory for pheromones can also be induced artificially by local infusion of the GABA(A) receptor antagonist bicuculline into the AOB. The natural memory formed by exposure to pheromones during mating is specific to the pheromones sensed by the female during mating. In contrast, the artificial memory induced by bicuculline is non-specific and results in the female mice recognizing all pheromones as if they were from the mating male. Although protein synthesis has been shown to be essential for development of pheromone memory, the gene expression cascades critical for memory formation are not known. We investigated changes in gene expression in the AOB using oligonucleotide microarrays during mating-induced pheromone memory (MIPM) as well as bicuculline-induced pheromone memory (BIPM). We found the set of genes induced during MIPM and BIPM are largely non-overlapping and Ingenuity Pathway Analysis revealed that the signaling pathways in MIPM and BIPM also differ. The products of genes induced during MIPM are associated with synaptic function, indicating the possibility of modification at specific synapses, while those induced during BIPM appear to possess neuron-wide functions, which would be consistent with global cellular changes. Thus, these results begin to provide a mechanistic explanation for specific and non-specific memories induced by pheromones and bicuculline infusion respectively.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/fisiologia , Memória/classificação , Memória/fisiologia , Atrativos Sexuais/fisiologia , Ativação Transcricional/genética , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Endogâmicos DBA
20.
Neoplasia ; 13(7): 570-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21750651

RESUMO

Epidermal growth factor receptor (EGFR) is overexpressed in a variety of epithelial tumors and is considered to be an important therapeutic target. Although gene amplification is responsible for EGFR overexpression in certain human malignancies including lung and head and neck cancers, additional molecular mechanisms are likely. Here, we report a novel interaction of EGFR with an HECT-type ubiquitin ligase SMURF2, which can ubiquitinate, but stabilize EGFR by protecting it from c-Cbl-mediated degradation. Conversely, small interfering RNA (siRNA)-mediated knockdown of SMURF2 destabilized EGFR, induced an autophagic response and reduced the clonogenic survival of EGFR-expressing cancer cell lines, with minimal effects on EGFR-negative cancer cells, normal fibroblasts, and normal epithelial cells. UMSCC74B head and neck squamous cancer cells, which form aggressive tumors in nude mice, significantly lost in vivo tumor-forming ability on siRNA-mediated SMURF2 knockdown. Gene expression microarray data from 443 lung adenocarcinoma patients, and tissue microarray data from 67 such patients, showed a strong correlation of expression between EGFR and SMURF2 at the messenger RNA and protein levels, respectively. Our findings suggest that SMURF2-mediated protective ubiquitination of EGFR may be responsible for EGFR overexpression in certain tumors and support targeting SMURF2-EGFR interaction as a novel therapeutic approach in treating EGFR-addicted tumors.


Assuntos
Receptores ErbB/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Células CHO , Linhagem Celular Tumoral , Células Cultivadas , Cricetinae , Cricetulus , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Células NIH 3T3 , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/genética , Estabilidade Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , RNA Interferente Pequeno/farmacologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...