Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1385, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360978

RESUMO

The Eyes Absent proteins (EYA1-4) are a biochemically unique group of tyrosine phosphatases known to be tumour-promoting across a range of cancer types. To date, the targets of EYA phosphatase activity remain largely uncharacterised. Here, we identify Polo-like kinase 1 (PLK1) as an interactor and phosphatase substrate of EYA4 and EYA1, with pY445 on PLK1 being the primary target site. Dephosphorylation of pY445 in the G2 phase of the cell cycle is required for centrosome maturation, PLK1 localization to centrosomes, and polo-box domain (PBD) dependent interactions between PLK1 and PLK1-activation complexes. Molecular dynamics simulations support the rationale that pY445 confers a structural impairment to PBD-substrate interactions that is relieved by EYA-mediated dephosphorylation. Depletion of EYA4 or EYA1, or chemical inhibition of EYA phosphatase activity, dramatically reduces PLK1 activation, causing mitotic defects and cell death. Overall, we have characterized a phosphotyrosine signalling network governing PLK1 and mitosis.


Assuntos
Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Tirosina/metabolismo , Mitose , Centrossomo/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Células HeLa , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transativadores/metabolismo
2.
J Exp Clin Cancer Res ; 42(1): 273, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37858153

RESUMO

The insulin-like growth factor receptor (IGF-1R) was among the most intensively pursued kinase targets in oncology. However, even after a slew of small-molecule and antibody therapeutics reached clinical trials for a range of solid tumors, the initial promise remains unfulfilled. Mechanisms of resistance to, and toxicities resulting from, IGF-1R-targeted drugs are well-catalogued, and there is general appreciation of the fact that a lack of biomarker-based patient stratification was a limitation of previous clinical trials. But no next-generation therapeutic strategies have yet successfully exploited this understanding in the clinic.Currently there is emerging interest in re-visiting IGF-1R targeted therapeutics in combination-treatment protocols with predictive biomarker-driven patient-stratification. One such biomarker that emerged from early clinical trials is the sub-cellular localization of IGF-1R. After providing some background on IGF-1R, its drugging history, and the trials that led to the termination of drug development for this target, we look more deeply into the correlation between sub-cellular localization of IGF-1R and susceptibility to various classes of IGF-1R - targeted agents.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/metabolismo , Receptor IGF Tipo 1/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores
3.
Clin Cancer Res ; 29(2): 458-471, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36394520

RESUMO

PURPOSE: Targeted cancer therapeutics have not significantly benefited patients with Ewing sarcoma with metastatic or relapsed disease. Understanding the molecular underpinnings of drug resistance can lead to biomarker-driven treatment selection. EXPERIMENTAL DESIGN: Receptor tyrosine kinase (RTK) pathway activation was analyzed in tumor cells derived from a panel of Ewing sarcoma tumors, including primary and metastatic tumors from the same patient. Phospho-RTK arrays, Western blots, and IHC were used. Protein localization and the levels of key markers were determined using immunofluorescence. DNA damage tolerance was measured through PCNA ubiquitination levels and the DNA fiber assay. Effects of pharmacologic inhibition were assessed in vitro and key results validated in vivo using patient-derived xenografts. RESULTS: Ewing sarcoma tumors fell into two groups. In one, IGF1R was predominantly nuclear (nIGF1R), DNA damage tolerance pathway was upregulated, and cells had low replication stress and RRM2B levels and high levels of WEE1 and RAD21. These tumors were relatively insensitive to IGF1R inhibition. The second group had high replication stress and RRM2B, low levels of WEE1 and RAD21, membrane-associated IGF1R (mIGF1R) signaling, and sensitivity to IGF1R or WEE1-targeted inhibitors. Moreover, the matched primary and metastatic tumors differed in IGF1R localization, levels of replication stress, and inhibitor sensitivity. In all instances, combined IGF1R and WEE1 inhibition led to tumor regression. CONCLUSIONS: IGF1R signaling mechanisms and replication stress levels can vary among Ewing sarcoma tumors (including in the same patient), influencing the effects of IGF1R and WEE1 treatment. These findings make the case for using biopsy-derived predictive biomarkers at multiple stages of Ewing sarcoma disease management.


Assuntos
Sarcoma de Ewing , Humanos , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais , Dano ao DNA , Linhagem Celular Tumoral , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas de Ciclo Celular , Receptor IGF Tipo 1/metabolismo
4.
Expert Rev Respir Med ; 15(12): 1539-1549, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34758677

RESUMO

INTRODUCTION: Mycophenolate mofetil (MMF), initially approved to prevent rejection in solid organ allograft, is now being increasingly used for other conditions. Over the last decade, MMF has emerged as a useful therapy for a variety of immune-mediated diseases. AREAS COVERED: There has been a growing interest in the clinical use of MMF in the treatment of ILDs due to its versatile anti-inflammatory, immunomodulatory, anti-fibrotic and anti-proliferative properties. In this focussed review, we summarize the available literature using the Pubmed, Science Direct and EMBASE databases published until June 2021 on the efficacy and tolerability of MMF in various ILDs. EXPERT OPINION: Other than idiopathic pulmonary fibrosis (IPF) and its broader category of progressive fibrosing ILD, there have been no drugs approved by relevant regulatory agencies for the treatment of the multiple other forms of ILD. Though results are limited, immunosuppressants such as MMF have shown promise as an effective and well-tolerated steroid-sparing agent, providing hope that the limited treatment armamentarium for ILDs can be expanded.


Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Humanos , Imunossupressores/efeitos adversos , Pulmão , Doenças Pulmonares Intersticiais/tratamento farmacológico , Ácido Micofenólico/efeitos adversos
5.
Biochem Soc Trans ; 49(3): 1397-1408, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34196366

RESUMO

The Eyes Absent (EYA) transactivator-phosphatase proteins are important contributors to cell-fate determination processes and to the development of multiple organs. The transcriptional regulatory activity as well as the protein tyrosine phosphatase activities of the EYA proteins can independently contribute to proliferation, differentiation, morphogenesis and tissue homeostasis in different contexts. Aberrant EYA levels or activity are associated with numerous syndromic and non-syndromic developmental disorders, as well as cancers. Commensurate with the multiplicity of biochemical activities carried out by the EYA proteins, they impact upon a range of cellular signaling pathways. Here, we provide a broad overview of the roles played by EYA proteins in development, and highlight the molecular signaling pathways known to be linked with EYA-associated organ development and developmental disorders.


Assuntos
Anormalidades Congênitas/genética , Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Rim/metabolismo , Proteínas Tirosina Fosfatases/genética , Transativadores/genética , Animais , Anormalidades Congênitas/embriologia , Anormalidades Congênitas/metabolismo , Olho/embriologia , Olho/crescimento & desenvolvimento , Predisposição Genética para Doença/genética , Humanos , Rim/embriologia , Rim/crescimento & desenvolvimento , Mutação , Proteínas Tirosina Fosfatases/metabolismo , Transativadores/metabolismo
6.
Circulation ; 144(7): 539-555, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34111939

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a common complication in patients with alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV), a severe congenital disorder associated with mutations in the FOXF1 gene. Although the loss of alveolar microvasculature causes PH in patients with ACDMPV, it is unknown whether increasing neonatal lung angiogenesis could prevent PH and right ventricular (RV) hypertrophy. METHODS: We used echocardiography, RV catheterization, immunostaining, and biochemical methods to examine lung and heart remodeling and RV output in Foxf1WT/S52F mice carrying the S52F Foxf1 mutation (identified in patients with ACDMPV). The ability of Foxf1WT/S52F mutant embryonic stem cells to differentiate into respiratory cell lineages in vivo was examined using blastocyst complementation. Intravascular delivery of nanoparticles with a nonintegrating Stat3 expression vector was used to improve neonatal pulmonary angiogenesis in Foxf1WT/S52F mice and determine its effects on PH and RV hypertrophy. RESULTS: Foxf1WT/S52F mice developed PH and RV hypertrophy after birth. The severity of PH in Foxf1WT/S52F mice directly correlated with mortality, low body weight, pulmonary artery muscularization, and increased collagen deposition in the lung tissue. Increased fibrotic remodeling was found in human ACDMPV lungs. Mouse embryonic stem cells carrying the S52F Foxf1 mutation were used to produce chimeras through blastocyst complementation and to demonstrate that Foxf1WT/S52F embryonic stem cells have a propensity to differentiate into pulmonary myofibroblasts. Intravascular delivery of nanoparticles carrying Stat3 cDNA protected Foxf1WT/S52F mice from RV hypertrophy and PH, improved survival, and decreased fibrotic lung remodeling. CONCLUSIONS: Nanoparticle therapies increasing neonatal pulmonary angiogenesis may be considered to prevent PH in ACDMPV.


Assuntos
Técnicas de Transferência de Genes , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/terapia , Nanopartículas , Síndrome da Persistência do Padrão de Circulação Fetal/complicações , Alvéolos Pulmonares/anormalidades , Fator de Transcrição STAT3/genética , Remodelação das Vias Aéreas/genética , Animais , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Ecocardiografia , Fibrose , Fatores de Transcrição Forkhead/deficiência , Terapia Genética , Humanos , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/metabolismo , Hipertrofia Ventricular Direita/diagnóstico , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/metabolismo , Camundongos , Camundongos Transgênicos , Densidade Microvascular/genética , Miofibroblastos/metabolismo , Síndrome da Persistência do Padrão de Circulação Fetal/genética , Síndrome da Persistência do Padrão de Circulação Fetal/patologia , Fator de Transcrição STAT3/administração & dosagem , Nanomedicina Teranóstica/métodos , Resultado do Tratamento , Remodelação Vascular/genética
7.
Int J Mol Sci ; 22(8)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920226

RESUMO

Here, we review the haloacid dehalogenase (HAD) class of protein phosphatases, with a particular emphasis on an unusual group of enzymes, the eyes absent (EYA) family. EYA proteins have the unique distinction of being structurally and mechanistically classified as HAD enzymes, yet, unlike other HAD phosphatases, they are protein tyrosine phosphatases (PTPs). Further, the EYA proteins are unique among the 107 classical PTPs in the human genome because they do not use a Cysteine residue as a nucleophile in the dephosphorylation reaction. We will provide an overview of HAD phosphatase structure-function, describe unique features of the EYA family and their tyrosine phosphatase activity, provide a brief summary of the known substrates and cellular functions of the EYA proteins, and speculate about the evolutionary origins of the EYA family of proteins.


Assuntos
Evolução Molecular , Genoma Humano/genética , Hidrolases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Proteínas Tirosina Fosfatases/genética , Cisteína/metabolismo , Humanos , Hidrolases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Relação Estrutura-Atividade
8.
Mol Cancer Ther ; 20(5): 803-815, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33649104

RESUMO

EWSR1/FLI1, the most common fusion gene in Ewing sarcoma, upregulates expression of the Eyes Absent 3 (EYA3) transactivator-phosphatase protein. The purpose of this study was to investigate molecular and cellular mechanisms through which EYA3 might promote Ewing sarcoma tumor growth and to determine whether the EYA3 tyrosine phosphatase activity represents a viable therapeutic target. We used genetic and pharmacologic modulation of EYA3 in cell line-based xenografts to examine how loss of EYA3 tyrosine phosphatase activity affects tumor growth and angiogenesis. Molecular mechanisms were evaluated in vivo and in vitro through analyses of tumor tissue and multicellular tumor spheroids. Our results show that both loss of EYA3 in Ewing sarcoma cells and pharmacologic inhibition of the EYA3 tyrosine phosphatase activity inhibit tumor growth and tumor angiogenesis. EYA3 regulates levels of VEGFA in Ewing tumors, as well as promoting DNA damage repair and survival of Ewing sarcoma tumor cells. Target engagement is demonstrated in tumor tissue through elevated levels of the EYA3 substrate H2AX-pY142 upon loss of EYA3 or with Benzarone treatment. The efficacy of EYA3 tyrosine phosphatase inhibition in attenuating tumor growth and angiogenesis is corroborated in an Ewing sarcoma patient-derived tumor xenograft. Together, the results presented here validate EYA3 as a target for the development of novel Ewing sarcoma therapeutic strategies, and set the stage for evaluating the efficacy of combining the antiangiogenic and anti-cell survival effects of EYA3 inhibition with cytotoxic chemotherapy.


Assuntos
Dano ao DNA/genética , Proteínas de Ligação a DNA/metabolismo , Sarcoma de Ewing/terapia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Neovascularização Patológica , Sarcoma de Ewing/patologia
9.
Crit Rev Biochem Mol Biol ; 55(4): 372-385, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32727223

RESUMO

The Eyes Absent (EYA) proteins are the only known instance of a single polypeptide housing the following three separable biochemical activities: tyrosine phosphatase, threonine phosphatase, and transactivation. This uniquely positions the EYAs to participate in both transcriptional regulation and signal transduction pathways. But it also complicates the assignment of biological roles to individual biochemical activities through standard loss-of-function experiments. Nevertheless, there is an emerging literature linking developmental and pathological functions with the various EYA activities, and a growing list of disease states that might benefit from EYA-targeted therapeutics. There also remain multiple unresolved issues with significant implications for our understanding of how the EYAs might impact such ubiquitous signaling cascades as the MYC and Notch pathways. This review will describe the unique juxtaposition of biochemical activities in the EYAs, their interaction with signaling pathways and cellular processes, emerging evidence of roles in disease states, and the feasibility of therapeutic targeting of individual EYA activities. We will focus on the phosphatase activities of the vertebrate EYA proteins and will examine the current state of knowledge regarding: • substrates and signaling pathways affected by the EYA tyrosine phosphatase activity; • modes of regulation of the EYA tyrosine phosphatase activity; • signaling pathways that implicate the threonine phosphatase activity of the EYAs including a potential interaction with PP2A-B55α; • the interplay between the two phosphatase activities and the transactivation function of the EYAs; • disease states associated with the EYAs and the current state of development of EYA-targeted therapeutics.


Assuntos
Fosfoproteínas Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Animais , Humanos , Fosfoproteínas Fosfatases/genética , Proteínas Tirosina Fosfatases/genética , Transativadores/genética
10.
Curr Biol ; 30(3): 408-420.e5, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31902729

RESUMO

Meiotic sex chromosome inactivation (MSCI) is an essential event in the mammalian male germline. MSCI is directed by a DNA damage response (DDR) pathway centered on the phosphorylation of histone variant H2AX at serine 139 (termed γH2AX). The failure to initiate MSCI is linked to complete meiotic arrest and elimination of germ cells; however, the mechanisms underlying this arrest and elimination remain unknown. To address this question, we established a new separation-of-function mouse model for H2ax that shows specific and complete defects in MSCI. The genetic change is a point mutation in which another H2AX amino acid residue important in the DDR, tyrosine 142 (Y142), is converted to alanine (H2ax-Y142A). In H2ax-Y142A meiosis, the establishment of DDR signals on the chromosome-wide domain of the sex chromosomes is impaired. The initiation of MSCI is required for stage progression, which enables crossover formation, suggesting that the establishment of MSCI permits the timely progression of male meiosis. Our results suggest that normal meiotic progression requires the removal of ATR-mediated DDR signaling from autosomes. We propose a novel biological function for MSCI: the initiation of MSCI sequesters DDR factors from autosomes to the sex chromosomes at the onset of the pachytene stage, and the subsequent formation of an isolated XY nuclear compartment-the XY body-sequesters DDR factors to permit meiotic progression from the mid-pachytene stage onward. VIDEO ABSTRACT.


Assuntos
Dano ao DNA , Mecanismo Genético de Compensação de Dose , Meiose , Cromossomos Sexuais/genética , Transdução de Sinais , Espermatogênese/genética , Animais , Histonas/metabolismo , Masculino , Camundongos , Fosforilação
11.
Nat Commun ; 10(1): 4143, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31515519

RESUMO

In pulmonary hypertension vascular remodeling leads to narrowing of distal pulmonary arterioles and increased pulmonary vascular resistance. Vascular remodeling is promoted by the survival and proliferation of pulmonary arterial vascular cells in a DNA-damaging, hostile microenvironment. Here we report that levels of Eyes Absent 3 (EYA3) are elevated in pulmonary arterial smooth muscle cells from patients with pulmonary arterial hypertension and that EYA3 tyrosine phosphatase activity promotes the survival of these cells under DNA-damaging conditions. Transgenic mice harboring an inactivating mutation in the EYA3 tyrosine phosphatase domain are significantly protected from vascular remodeling. Pharmacological inhibition of the EYA3 tyrosine phosphatase activity substantially reverses vascular remodeling in a rat model of angio-obliterative pulmonary hypertension. Together these observations establish EYA3 as a disease-modifying target whose function in the pathophysiology of pulmonary arterial hypertension can be targeted by available inhibitors.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Hipertensão Arterial Pulmonar/enzimologia , Hipertensão Arterial Pulmonar/fisiopatologia , Remodelação Vascular , Animais , Apoptose/efeitos dos fármacos , Benzobromarona/análogos & derivados , Benzobromarona/farmacologia , Cardiomegalia/complicações , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/antagonistas & inibidores , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Hipóxia/complicações , Hipóxia/fisiopatologia , Masculino , Camundongos Transgênicos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Hipertensão Arterial Pulmonar/complicações , Artéria Pulmonar/patologia , Ratos Sprague-Dawley , Remodelação Vascular/efeitos dos fármacos
12.
Nat Cell Biol ; 21(4): 420-429, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30936473

RESUMO

During mouse postnatal eye development, the embryonic hyaloid vascular network regresses from the vitreous as an adaption for high-acuity vision. This process occurs with precisely controlled timing. Here, we show that opsin 5 (OPN5; also known as neuropsin)-dependent retinal light responses regulate vascular development in the postnatal eye. In Opn5-null mice, hyaloid vessels regress precociously. We demonstrate that 380-nm light stimulation via OPN5 and VGAT (the vesicular GABA/glycine transporter) in retinal ganglion cells enhances the activity of inner retinal DAT (also known as SLC6A3; a dopamine reuptake transporter) and thus suppresses vitreal dopamine. In turn, dopamine acts directly on hyaloid vascular endothelial cells to suppress the activity of vascular endothelial growth factor receptor 2 (VEGFR2) and promote hyaloid vessel regression. With OPN5 loss of function, the vitreous dopamine level is elevated and results in premature hyaloid regression. These investigations identify violet light as a developmental timing cue that, via an OPN5-dopamine pathway, regulates optic axis clearance in preparation for visual function.


Assuntos
Dopamina/metabolismo , Olho/irrigação sanguínea , Luz , Proteínas de Membrana/metabolismo , Opsinas/metabolismo , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Endotélio Vascular/metabolismo , Olho/enzimologia , Olho/crescimento & desenvolvimento , Olho/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Opsinas/genética , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/efeitos da radiação , Treonina/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/fisiologia , Corpo Vítreo/metabolismo
13.
Mol Cancer Ther ; 17(8): 1659-1669, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29802120

RESUMO

DNA damage repair capacity is required for cells to survive catastrophic DNA damage and proliferate under conditions of intratumoral stress. The ability of the minor histone protein H2AX to serve as a hub for the assembly of a productive DNA damage repair complex is a necessary step in preventing DNA damage-induced cell death. The Eyes Absent (EYA) proteins dephosphorylate the terminal tyrosine residue of H2AX, thus permitting assembly of a productive DNA repair complex. Here, we use genetic and chemical biology approaches to separately query the roles of host vascular endothelial cell and tumor cell EYA in tumor growth. Deletion of Eya3 in host endothelial cells significantly reduced tumor angiogenesis and limited tumor growth in xenografts. Deletion of Eya3 in tumor cells reduced tumor cell proliferation and tumor growth without affecting tumor angiogenesis. A chemical inhibitor of the EYA tyrosine phosphatase activity inhibited both tumor angiogenesis and tumor growth. Simultaneously targeting the tumor vasculature and tumor cells is an attractive therapeutic strategy because it could counter the development of the more aggressive phenotype known to emerge from conventional antiangiogenic agents. Mol Cancer Ther; 17(8); 1659-69. ©2018 AACR.


Assuntos
Dano ao DNA/genética , Proteínas do Olho/genética , Proteínas Tirosina Fosfatases/genética , Animais , Humanos , Masculino , Camundongos , Neovascularização Patológica
14.
J Exp Clin Cancer Res ; 36(1): 102, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28774341

RESUMO

Under hypoxic conditions, tumor cells undergo a series of adaptations that promote evolution of a more aggressive tumor phenotype including the activation of DNA damage repair proteins, altered metabolism, and decreased proliferation. Together these changes mitigate the negative impact of oxygen deprivation and allow preservation of genomic integrity and proliferative capacity, thus contributing to tumor growth and metastasis. As a result the presence of a hypoxic microenvironment is considered a negative clinical feature of many solid tumors. Hypoxic niches in tumors also represent a therapeutically privileged environment in which chemo- and radiation therapy is less effective. Although the negative impact of tumor hypoxia has been well established, the precise effect of oxygen deprivation on tumor cell behavior, and the molecular signals that allow a tumor cell to survive in vivo are poorly understood. Multicellular tumor spheroids (MCTS) have been used as an in vitro model for the avascular tumor niche, capable of more accurately recreating tumor genomic profiles and predicting therapeutic response. However, relatively few studies have used MCTS to study the molecular mechanisms driving tumor cell adaptations within the hypoxic tumor environment. Here we will review what is known about cell proliferation, DNA damage repair, and metabolic pathways as modeled in MCTS in comparison to observations made in solid tumors. A more precise definition of the cell populations present within 3D tumor models in vitro could better inform our understanding of the heterogeneity within tumors as well as provide a more representative platform for the testing of therapeutic strategies.


Assuntos
Proliferação de Células/efeitos dos fármacos , Esferoides Celulares/metabolismo , Linhagem Celular Tumoral , Humanos
15.
BMC Cancer ; 17(1): 338, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28521819

RESUMO

BACKGROUND: Multicellular Tumor Spheroids are frequently used to mimic the regionalization of proliferation and the hypoxic environment within avascular tumors. Here we exploit these features to study the activation of DNA damage repair pathways and their correlation to developing hypoxia. METHODS: Activation of DNA damage repair markers, proliferation, cell death, glycogen accumulation and developing hypoxia were investigated using immunofluorescence, immuno-histochemistry, EdU incorporation, Western blots, COMET assays, and pharmacological agents in A673 Ewing sarcoma spheroids and monolayer cultures. RESULTS: DNA damage marker γ-H2AX is observed in the hypoxic, peri-necrotic region of growing spheroids. While most proliferating cells are seen on the spheroid surface, there are also a few Ki-67 positive cells in the hypoxic zone. The hypoxia-induced phosphorylation of H2AX to form γ-H2AX in spheroids is attenuated by the ATM inhibitor KU55933, but not the ATR inhibitor VE-821. CONCLUSION: Tumor spheroids mimic tumor microenvironments such as the anoxic, hypoxic and oxic niches within solid tumors, as well as populations of cells that are viable, proliferating, and undergoing DNA damage repair processes under these different micro-environmental conditions. ATM, but not ATR, is the primary kinase responsible for γ-H2AX formation in the hypoxic core of A673 spheroids. Spheroids could offer unique advantages in testing therapeutics designed to target malignant cells that evade conventional treatment strategies by adapting to the hypoxic tumor microenvironment.


Assuntos
Proliferação de Células , Dano ao DNA , Esferoides Celulares/fisiologia , Animais , Apoptose , Carcinoma Pulmonar de Lewis/patologia , Hipóxia Celular , Linhagem Celular Tumoral , Histonas/metabolismo , Humanos , Camundongos
16.
Angiogenesis ; 20(3): 307-323, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28108843

RESUMO

ETS transcription factor ETV2/Etsrp functions as a key regulator of embryonic vascular development in multiple vertebrates. However, its role in pathological vascular development has not been previously investigated. To analyze its role in tumor angiogenesis, we utilized a zebrafish xenotransplantation model. Using a photoconvertible kdrl:NLS-KikGR line, we demonstrated that all tumor vessels originate from the existing embryonic vasculature by the mechanism of angiogenesis. Xenotransplantation of mouse B16 melanoma cells resulted in a significant increase in expression of the ETS transcription factors etv2 and fli1b expression throughout the embryonic vasculature. etv2 null mutants which undergo significant recovery of embryonic angiogenesis during later developmental stages displayed a strong inhibition of tumor angiogenesis. We utilized highly specific and fully validated photoactivatable morpholinos to inhibit Etv2 function after embryonic vasculogenesis has completed. Inducible inhibition of Etv2 function resulted in a significant reduction of tumor angiogenesis and inhibition of tumor growth. Furthermore, inducible inhibition of Etv2 function in fli1b mutant embryos resulted in even stronger reduction in tumor angiogenesis and growth, demonstrating that Etv2 and Fli1b have a partially redundant requirement during tumor angiogenesis. These results demonstrate the requirement for Etv2 and Fli1b in tumor angiogenesis and suggest that inhibition of these ETS factors may present a novel strategy to inhibit tumor angiogenesis and reduce tumor growth.


Assuntos
Neoplasias/irrigação sanguínea , Neoplasias/genética , Neovascularização Patológica/genética , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Embrião não Mamífero/irrigação sanguínea , Embrião não Mamífero/patologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Melanoma Experimental/patologia , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica/patologia , Fatores de Transcrição/genética , Regulação para Cima/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
17.
Am J Pathol ; 186(3): 568-78, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26765957

RESUMO

Management of neoangiogenesis remains a high-value therapeutic goal. A recently uncovered association between the DNA damage repair pathway and pathological angiogenesis could open previously unexplored possibilities for intervention. An attractive and novel target is the Eyes absent (EYA) tyrosine phosphatase, which plays a critical role in the repair versus apoptosis decision after DNA damage. This study examines the role of EYA in the postnatal development of the retinal vasculature and under conditions of ischemia-reperfusion encountered in proliferative retinopathies. We find that the ability of the EYA proteins to promote endothelial cell (EC) migration contributes to a delay in postnatal development of the retinal vasculature when Eya3 is deleted specifically in ECs. By using genetic and chemical biology tools, we show that EYA contributes to pathological angiogenesis in a model of oxygen-induced retinopathy. Both in vivo and in vitro, loss of EYA tyrosine phosphatase activity leads to defective assembly of γ-H2AX foci and thus to DNA damage repair in ECs under oxidative stress. These data reveal the potential utility of EYA tyrosine phosphatase inhibitors as therapeutic agents in inhibiting pathological neovascularization with a range of clinical applications.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Neovascularização Patológica/patologia , Proteínas Tirosina Fosfatases/metabolismo , Animais , Animais Recém-Nascidos , Movimento Celular , Dano ao DNA/fisiologia , Proteínas de Ligação a DNA/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Olho/metabolismo , Olho/patologia , Feminino , Deleção de Genes , Humanos , Masculino , Camundongos Endogâmicos C57BL , Neovascularização Patológica/prevenção & controle , Oxigênio/efeitos adversos , Proteínas Tirosina Fosfatases/genética , Traumatismo por Reperfusão/patologia , Retinopatia da Prematuridade/induzido quimicamente , Retinopatia da Prematuridade/patologia
19.
PLoS One ; 10(10): e0133082, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26426422

RESUMO

Hearing loss is a complex disorder caused by both genetic and environmental factors. Previously, mutations in CIB2 have been identified as a common cause of genetic hearing loss in Pakistani and Turkish populations. Here we report a novel (c.556C>T; p.(Arg186Trp)) transition mutation in the CIB2 gene identified through whole exome sequencing (WES) in a Caribbean Hispanic family with non-syndromic hearing loss. CIB2 belongs to the family of calcium-and integrin-binding (CIB) proteins. The carboxy-termini of CIB proteins are associated with calcium binding and intracellular signaling. The p.(Arg186Trp) mutation is localized within predicted type II PDZ binding ligand at the carboxy terminus. Our ex vivo studies revealed that the mutation did not alter the interactions of CIB2 with Whirlin, nor its targeting to the tips of hair cell stereocilia. However, we found that the mutation disrupts inhibition of ATP-induced Ca2+ responses by CIB2 in a heterologous expression system. Our findings support p.(Arg186Trp) mutation as a cause for hearing loss in this Hispanic family. In addition, it further highlights the necessity of the calcium binding property of CIB2 for normal hearing.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Perda Auditiva/genética , Hispânico ou Latino/genética , Mutação de Sentido Incorreto , Linhagem , Adulto , Sequência de Aminoácidos , Animais , Células COS , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Criança , Chlorocebus aethiops , Exoma/genética , Feminino , Células HEK293 , Perda Auditiva/metabolismo , Perda Auditiva/patologia , Humanos , Lactente , Masculino , Proteínas de Membrana/metabolismo , Modelos Moleculares , Miosinas/metabolismo , Estrutura Secundária de Proteína , Estereocílios/metabolismo
20.
Biol Open ; 4(7): 873-84, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25979708

RESUMO

Meiosis is precisely regulated by the factors involved in DNA damage response in somatic cells. Among them, phosphorylation of H2AX on Serine 139 (γH2AX) is an essential signal for the silencing of unsynapsed sex chromosomes during male meiosis. However, it remains unknown how adjacent H2AX phosphorylation on Tyrosine 142 (pTyr142) is regulated in meiosis. Here we investigate the meiotic functions of BAZ1B (WSTF), the only known Tyr142 kinase in somatic cells, using mice possessing a conditional deletion of BAZ1B. Although BAZ1B deletion causes ectopic γH2AX signals on synapsed autosomes during the early pachytene stage, BAZ1B is dispensable for fertility and critical events during spermatogenesis. BAZ1B deletion does not alter events on unsynapsed axes and pericentric heterochromatin formation. Furthermore, BAZ1B is dispensable for localization of the ATP-dependent chromatin remodeling protein SMARCA5 (SNF2h) during spermatogenesis despite the complex formation between BAZ1B and SMARCA5, known as the WICH complex, in somatic cells. Notably, pTyr142 is regulated independently of BAZ1B and is dephosphorylated on the sex chromosomes during meiosis in contrast with the presence of adjacent γH2AX. Dephosphorylation of pTyr142 is regulated by MDC1, a binding partner of γH2AX. These results reveal the distinct regulation of two adjacent phosphorylation sites of H2AX during meiosis, and suggest that another kinase mediates Tyr142 phosphorylation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...