Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Precis Oncol ; 5(1): 59, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162980

RESUMO

Precision oncology is currently based on pairing molecularly targeted agents (MTA) to predefined single driver genes or biomarkers. Each tumor harbors a combination of a large number of potential genetic alterations of multiple driver genes in a complex system that limits the potential of this approach. We have developed an artificial intelligence (AI)-assisted computational method, the digital drug-assignment (DDA) system, to prioritize potential MTAs for each cancer patient based on the complex individual molecular profile of their tumor. We analyzed the clinical benefit of the DDA system on the molecular and clinical outcome data of patients treated in the SHIVA01 precision oncology clinical trial with MTAs matched to individual genetic alterations or biomarkers of their tumor. We found that the DDA score assigned to MTAs was significantly higher in patients experiencing disease control than in patients with progressive disease (1523 versus 580, P = 0.037). The median PFS was also significantly longer in patients receiving MTAs with high (1000+ <) than with low (<0) DDA scores (3.95 versus 1.95 months, P = 0.044). Our results indicate that AI-based systems, like DDA, are promising new tools for oncologists to improve the clinical benefit of precision oncology.

3.
Cytometry A ; 89(9): 826-34, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27602881

RESUMO

ABC multidrug transporters are key players in cancer multidrug resistance and in determining the ADME-Tox properties of drugs and xenobiotics. The most sensitive and specific detection of these transporters is based on functional assays. Assessment of the transporter-dependent reduction of cellular uptake of the fluorescent dyes, such as Hoechst 33342 (Ho) and more recently DyeCycle Violet (DCV), have been widely advocated for the characterization of both ABCB1 and ABCG2 multidrug transporters. Detailed comparison of these supravital DNA-binding dyes revealed that DCV is less toxic to ABCG2- and ABCB1-expressing cells than Ho. ATPase measurements imply that DCV and Ho are similarly handled by ABCB1, whereas ABCG2 seems to transport DVC more effectively. In addition, we have developed an image-based high content microscopy screening method for simultaneous in situ measurement of the cellular activity and expression of the ABCG2 multidrug transporter. We demonstrated the applicability of this method for identifying ABCG2-positive cells in heterogeneous cell population by a single dye uptake measurement. These results may promote multidrug transporter studies at a single cell level and allow the quantitative detection of clinically important drug-resistant sub-populations. © 2016 International Society for Advancement of Cytometry.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/isolamento & purificação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/isolamento & purificação , Análise de Célula Única/métodos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/isolamento & purificação , Adenosina Trifosfatases/genética , Benzimidazóis/química , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Corantes Fluorescentes/química , Regulação Neoplásica da Expressão Gênica , Humanos , Especificidade por Substrato
4.
Adv Cancer Res ; 125: 97-137, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25640268

RESUMO

This chapter deals with the interactions of two medically important multidrug ABC transporters (MDR-ABC), ABCB1 and ABCG2, with lipid molecules. Both ABCB1 and ABCG2 are capable of transporting a wide range of hydrophobic drugs and xenobiotics and are involved in cancer chemotherapy resistance. Therefore, the exploration of their mechanism of action has major therapeutic consequences. As discussed here in detail, both ABCB1 and ABCG2 are significantly affected by various lipid compounds especially those residing in their close proximity in the plasma membrane. ABCB1 is capable of transporting lipids and lipid derivatives, and thus may alter the general membrane composition by "flopping" membrane lipid constituents, while there is no such information regarding ABCG2. Still, both ABCB1 and ABCG2 show complex interactions with a variety of lipid molecules, and the transporters are significantly modulated by cholesterol and cholesterol derivatives at the posttranslational level. In this chapter, we explore the molecular details of the direct transporter-lipid interactions, the potential role of lipid-sensor domains within the proteins, as well as the application of experimental site-directed mutagenesis, detailed structural studies, and in silico modeling for examining these interactions. We also discuss the regulation of ABCB1 and ABCG2 expression at the transcriptional level, occurring through nuclear receptors involved in lipid sensing. The better understanding of lipid interactions with these medically important MDR-ABC transporters may significantly improve further drug development and clinical treatment options.


Assuntos
Transportadores de Cassetes de Ligação de ATP/biossíntese , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Lipídeos de Membrana/metabolismo , Proteínas de Neoplasias/biossíntese , Subfamília B de Transportador de Cassetes de Ligação de ATP/biossíntese , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transporte Biológico/genética , Membrana Celular/fisiologia , Regulação da Expressão Gênica/genética , Humanos , Metabolismo dos Lipídeos/fisiologia , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/genética , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/metabolismo , Transcrição Gênica/genética
5.
Biochim Biophys Acta ; 1848(2): 477-87, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25445676

RESUMO

Human ABCG2 is a plasma membrane glycoprotein causing multidrug resistance in cancer. Membrane cholesterol and bile acids are efficient regulators of ABCG2 function, while the molecular nature of the sterol-sensing sites has not been elucidated. The cholesterol recognition amino acid consensus (CRAC, L/V-(X)(1-5)-Y-(X)(1-5)-R/K) sequence is one of the conserved motifs involved in cholesterol binding in several proteins. We have identified five potential CRAC motifs in the transmembrane domain of the human ABCG2 protein. In order to define their roles in sterol-sensing, the central tyrosines of these CRACs (Y413, 459, 469, 570 and 645) were mutated to S or F and the mutants were expressed both in insect and mammalian cells. We found that mutation in Y459 prevented protein expression; the Y469S and Y645S mutants lost their activity; while the Y570S, Y469F, and Y645F mutants retained function as well as cholesterol and bile acid sensitivity. We found that in the case of the Y413S mutant, drug transport was efficient, while modulation of the ATPase activity by cholesterol and bile acids was significantly altered. We suggest that the Y413 residue within a putative CRAC motif has a role in sterol-sensing and the ATPase/drug transport coupling in the ABCG2 multidrug transporter.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Ácidos e Sais Biliares/química , Colesterol/química , Mutação , Proteínas de Neoplasias/química , Tirosina/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Motivos de Aminoácidos , Animais , Sequência Conservada , Expressão Gênica , Células HEK293 , Humanos , Dados de Sequência Molecular , Proteínas de Neoplasias/genética , Fenilalanina/química , Fenilalanina/genética , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Serina/química , Serina/genética , Células Sf9 , Spodoptera , Tirosina/genética
6.
Drug Metab Dispos ; 42(4): 575-85, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24384916

RESUMO

ABCG2 (ATP-binding cassette, subfamily G, member 2) is a plasma membrane glycoprotein that actively extrudes xenobiotics and endobiotics from the cells and causes multidrug resistance in cancer. In the liver, ABCG2 is expressed in the canalicular membrane of hepatocytes and excretes its substrates into the bile. ABCG2 is known to require high membrane cholesterol content for maximal activity, and by examining purified ABCG2 reconstituted in proteoliposomes we have recently shown that cholesterol is an essential activator, while bile acids significantly modify the activity of this protein. In the present work, by using isolated insect cell membrane preparations expressing human ABCG2 and its mutant variants, we have analyzed whether certain regions in this protein are involved in sterol recognition. We found that replacing ABCG2-R482 with large amino acids does not affect cholesterol dependence, but changes to small amino acids cause altered cholesterol sensitivity. When leucines in the potential steroid-binding element (SBE, aa 555-558) of ABCG2 were replaced by alanines, cholesterol dependence of ABCG2 activity was strongly reduced, although the L558A mutant variant when purified and reconstituted still required cholesterol for full activity. Regarding the effect of bile acids in isolated membranes, we found that these compounds decreased ABCG2-ATPase in the absence of drug substrates, which did not significantly affect substrate-stimulated ATPase activity. These ABCG2 mutant variants also altered bile acid sensitivity, although cholic acid and glycocholate were not transported by the protein. We suggest that the aforementioned two regions in ABCG2 are important for sterol sensing and may represent potential targets for pharmacologic modulation of ABCG2 function.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácidos e Sais Biliares/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Proteínas de Neoplasias/metabolismo , Mutação Puntual , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Canalículos Biliares/metabolismo , Sítios de Ligação , Transporte Biológico , Hepatócitos/metabolismo , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Células Sf9 , Spodoptera , Especificidade por Substrato , Transfecção , Xenobióticos/metabolismo
7.
Biochem Pharmacol ; 84(3): 260-7, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22548830

RESUMO

Human ABCG2 is a plasma membrane glycoprotein that provides physiological protection against xenobiotics. ABCG2 also significantly influences biodistribution of drugs through pharmacological tissue barriers and confers multidrug resistance to cancer cells. Moreover, ABCG2 is the molecular determinant of the side population that is characteristically enriched in normal and cancer stem cells. Numerous tumors depend on unregulated EGFR signaling, thus inhibition of this receptor by small molecular weight inhibitors such as gefitinib, and the novel second generation agents vandetanib, pelitinib and neratinib, is a promising therapeutic option. In the present study, we provide detailed biochemical characterization regarding the interaction of these EGFR inhibitors with ABCG2. We show that ABCG2 confers resistance to gefitinib and pelitinib, whereas the intracellular action of vandetanib and neratinib is unaltered by the presence of the transporter. At higher concentrations, however, all these EGFR inhibitors inhibit ABCG2 function, thereby promoting accumulation of ABCG2 substrate drugs. We also report enhanced expression of ABCG2 in gefitinib-resistant non-small cell lung cancer cells, suggesting potential clinical relevance of ABCG2 in acquired drug resistance. Since ABCG2 has important impact on both the pharmacological properties and anti-cancer efficiencies of drugs, our results regarding the novel EGFR inhibitors should provide useful information about their therapeutic applicability against ABCG2-expressing cancer cells depending on EGFR signaling. In addition, the finding that these EGFR inhibitors efficiently block ABCG2 function may help to design novel drug-combination therapeutic strategies.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Aminoquinolinas/metabolismo , Compostos de Anilina/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Proteínas de Neoplasias/metabolismo , Piperidinas/metabolismo , Quinazolinas/metabolismo , Quinolinas/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/fisiologia , Aminoquinolinas/química , Aminoquinolinas/farmacologia , Compostos de Anilina/química , Compostos de Anilina/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Gefitinibe , Humanos , Proteínas de Neoplasias/fisiologia , Piperidinas/química , Piperidinas/farmacologia , Ligação Proteica/efeitos dos fármacos , Quinazolinas/química , Quinazolinas/farmacologia , Quinolinas/química , Quinolinas/farmacologia
8.
Biochem Biophys Res Commun ; 420(4): 869-74, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22449574

RESUMO

The ATP-binding cassette (ABC) transporter ABCG2 plays an important role in tissue detoxification and confers multidrug resistance to cancer cells. Identification of expressional and functional cellular regulators of this multidrug transporter is therefore intensively pursued. The PI3-kinase/Akt signaling axis has been implicated as a key element in regulating various cellular functions, including the expression and plasma membrane localization of ABCG2. Here we demonstrate that besides inhibiting their respective target kinases, the pharmacological PI3-kinase inhibitor LY294002 and the downstream mTOR kinase inhibitor rapamycin also directly inhibit ABCG2 function. In contrast, wortmannin, another commonly used pharmacological inhibitor of PI3-kinase does not interact with the transporter. We suggest that direct functional modulation of ABCG2 should be taken into consideration when pharmacological agents are applied to dissect the specific role of PI3-kinase/Akt/mTOR signaling in cellular functions.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Androstadienos/farmacologia , Linhagem Celular , Cromonas/farmacologia , Humanos , Morfolinas/farmacologia , Sirolimo/farmacologia , Wortmanina
9.
Eur J Pharm Sci ; 45(1-2): 101-9, 2012 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-22115866

RESUMO

The ABCG2 multidrug transporter protein has been identified as a key player in cancer drug resistance and xenobiotic elimination, as its actively transported substrates include anticancer drugs, intermediates of heme metabolism, xenobiotics, and also drug conjugates. Several transported substrates at higher concentrations, and some anticancer agents even at low concentrations directly inhibit the ABCG2 transporter, thus it is difficult to provide estimation for pharmacologically important ABCG2-dependent interactions. In addition, as documented here, in mutant variants of the transporter, inhibitors of the wild-type ABCG2 may become actively transported substrates. In this paper we describe a rapid in vitro assay to identify transport modulation by measuring the cell surface interaction of a conformation sensitive monoclonal antibody (5D3) with ABCG2 in intact cells. As documented, in conjunction with membrane ATPase, transport and cytotoxicity measurements, this assay provides a reliable estimate of concentration-dependent modulation of ABCG2 by newly emerging pharmacophores. A high-throughput, 96-well plate assay platform is also provided.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Reações Antígeno-Anticorpo/efeitos dos fármacos , Antineoplásicos/farmacologia , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala , Proteínas de Neoplasias/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Anticorpos Monoclonais/metabolismo , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Ligantes , Moduladores de Transporte de Membrana/farmacologia , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Concentração Osmolar , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo
10.
Expert Opin Drug Metab Toxicol ; 7(5): 623-42, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21410427

RESUMO

INTRODUCTION: Anticancer tyrosine kinase inhibitors (TKIs) are small molecule hydrophobic compounds designed to arrest aberrant signaling pathways in malignant cells. Multidrug resistance (MDR) ATP binding cassette (ABC) transporters have recently been recognized as important determinants of the general ADME-Tox (absorption, distribution, metabolism, excretion, toxicity) properties of small molecule TKIs, as well as key factors of resistance against targeted anticancer therapeutics. AREAS COVERED: The article summarizes MDR-related ABC transporter interactions with imatinib, nilotinib, dasatinib, gefitinib, erlotinib, lapatinib, sunitinib and sorafenib, including in vitro and in vivo observations. An array of methods developed to study such interactions is presented. Transporter-TKI interactions relevant to the ADME-Tox properties of TKI drugs, primary or acquired cancer TKI resistance, and drug-drug interactions are also reviewed. EXPERT OPINION: Based on the concept presented in this review, TKI anticancer drugs are considered as compounds recognized by the cellular mechanisms handling xenobiotics. Accordingly, novel anticancer therapies should equally focus on the effectiveness of target inhibition and exploration of potential interactions of the designed molecules by membrane transporters. Thus, targeted hydrophobic small molecule compounds should also be screened to evade xenobiotic-sensing cellular mechanisms.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacocinética
11.
Curr Cancer Drug Targets ; 9(3): 252-72, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19442047

RESUMO

Protein kinase inhibitors (PKI) are becoming key agents in modern cancer chemotherapy, and combination of PKIs with classical chemotherapeutic drugs may help to overcome currently untreatable metastatic cancers. Since chemotherapy resistance is a recurrent problem, mechanisms of resistance should be clarified in order to help further drug development. Here we suggest that in addition to PKI resistance based on altered target structures, the active removal of these therapeutic agents by the MDR-ABC transporters should also be considered as a major cause of clinical resistance. We discuss the occurring systemic and cellular mechanisms, which may hamper PKI efficiency, and document the role of selected MDR-ABC transporters in these phenomena through their interactions with these anticancer agents. Moreover, we suggest that PKI interactions with ABC transporters may modulate overall drug metabolism, including the fate of diverse, chemically or target-wise unrelated drugs. These effects are based on multiple forms of MDR-ABC transporter interaction with PKIs, as these compounds may be both substrates and/or inhibitors of an ABC transporter. We propose that these interactions should be carefully considered in clinical application, and a combined MDR-ABC transporter and PKI effect may bring a major advantage in future drug development.


Assuntos
Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Antineoplásicos/farmacologia , Apoptose , Divisão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios Clínicos como Assunto , Dano ao DNA , Desenho de Fármacos , Humanos , Neoplasias/enzimologia , Neoplasias/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores
12.
Adv Drug Deliv Rev ; 61(1): 47-56, 2009 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-19135105

RESUMO

The major aim of this chapter is to provide a critical overview of the in vitro methods available for studying the function of the ABCG2 multidrug transporter protein. When describing the most applicable assay systems, in each case we present a short overview relevant to ABC multidrug transporters in general, and then we concentrate on the tools applicable to analysis of substrate-drug interactions, the effects of potential activators and inhibitors, and the role of polymorphisms of the ABCG2 transporter. Throughout this chapter we focus on recently developed assay systems, which may provide new possibilities for analyzing the pharmacological aspects of this medically important protein.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Bioensaio/métodos , Resistência a Múltiplos Medicamentos/fisiologia , Proteínas de Neoplasias/fisiologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/genética , Interações Medicamentosas , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Especificidade por Substrato
13.
J Biol Chem ; 283(38): 26059-70, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18644784

RESUMO

Human ABCG2 is a plasma membrane glycoprotein working as a homodimer or homo-oligomer. The protein plays an important role in the protection/detoxification of various tissues and may also be responsible for the multidrug-resistant phenotype of cancer cells. In our previous study we found that the 5D3 monoclonal antibody shows a function-dependent reactivity to an extracellular epitope of the ABCG2 transporter. In the current experiments we have further characterized the 5D3-ABCG2 interaction. The effect of chemical cross-linking and the modulation of extracellular S-S bridges on the transporter function and 5D3 reactivity of ABCG2 were investigated in depth. We found that several protein cross-linkers greatly increased 5D3 labeling in ABCG2 expressing HEK cells; however, there was no correlation between covalent dimer formation, the inhibition of transport activity, and the increase in 5D3 binding. Dithiothreitol treatment, which reduced the extracellular S-S bridge-forming cysteines of ABCG2, had no effect on transport function but caused a significant decrease in 5D3 binding. When analyzing ABCG2 mutants carrying Cys-to-Ala changes in the extracellular loop, we found that the mutant C603A (lacking the intermolecular S-S bond) showed comparable transport activity and 5D3 reactivity to the wild-type ABCG2. However, disruption of the intramolecular S-S bridge (in C592A, C608A, or C592A/C608A mutants) in this loop abolished 5D3 binding, whereas the function of the protein was preserved. Based on these results and ab initio folding simulations, we propose a model for the large extracellular loop of the ABCG2 protein.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Anticorpos Monoclonais/química , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Reagentes de Ligações Cruzadas/farmacologia , Cisteína/química , Dimerização , Ditiotreitol/química , Epitopos/química , Formaldeído/farmacologia , Humanos , Proteínas de Membrana Transportadoras/química , Modelos Biológicos , Mutação , Polímeros/farmacologia , Ligação Proteica , Conformação Proteica , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...