Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 11(5): 1006-1013, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32435418

RESUMO

The ability of phenolic compounds from Morus nigra to modulate sarco-endoplasmic Ca2+-ATPase (SERCA1) activity was analyzed. Enzyme activity decrease correlated with the binding energy of agents to SERCA1. Results from theoretical and experimental approaches were coherent in identifying binding sites to SERCA1. Albanol A inhibited SERCA1 by immersion in the luminal gate at the site of Ca2+ release. Kuwanon U exerted an inhibitory effect by preventing ATP binding in the cytosolic region of SERCA1, and this was associated with conformational alterations. On the basis of similarities of SERCA isoforms, the viability of beta-cells containing SERCA2b was analyzed. Both correlation of viability and negative correlation of SERCA2b expression with SERCA1 activity were found for agents with the highest binding energy to SERCA1. The compounds studied may regulate viability and apoptosis of pancreatic beta-cells via modulation of SERCA activity. Novel pharmacological interventions in diabetes may be realized via compounds restoring ER calcium levels.

2.
Biomed Pharmacother ; 111: 1326-1333, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30841446

RESUMO

Polyphenols synthesized by plants and fungi have various pharmacological effects. The ability of polyphenols to modulate sirtuins has gained considerable interest due to the role of sirtuins in aging, insulin sensitivity, lipid metabolism, inflammation, and cancer. In particular, sirtuin 6 (SIRT6) has gained importance in regulating a variety of cellular processes, including genomic stability and glucose metabolism. On the other hand, quercetin has been demonstrated to modulate sirtuins and to protect against several chronic diseases. In this study, two quercetin derivatives, diquercetin and 2-chloro-1,4-naphtoquinone-quercetin, were identified as promising SIRT6 inhibitors with IC50 values of 130 µM and 55 µM, respectively. 2-Chloro-1,4-naphtoquinone-quercetin also showed potent inhibition against SIRT2, with an IC50 value of 14 µM. Diquercetin increased the Km value of NAD+, whereas 2-chloro-1,4-naphthoquinone-quercetin increased the Km value of the acetylated substrate. Molecular docking studies suggest that diquercetin prefers the binding site of the nicotinamide (NAM) moiety, whereas 2-chloro-1,4-naphtoquinone-quercetin prefers to dock into the substrate binding site. Overall, the results of in vitro studies and molecular modeling indicate that diquercetin competes with nicotinamide adenine dinucleotide (NAD+), whereas 2-chloro-1,4-naphthoquinone-quercetin competes with the acetylated substrate in the catalytic site of SIRT6. Natural polyphenolic compounds targeting sirtuins show promise as a new approach in the search for novel and effective treatments for age-related diseases.


Assuntos
Quercetina/farmacologia , Sirtuínas/antagonistas & inibidores , Sítios de Ligação/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , NAD/metabolismo , Niacinamida/metabolismo , Polifenóis/farmacologia
3.
Cell Calcium ; 74: 112-122, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30015246

RESUMO

A novel pathway of methylglyoxal (MGX)-induced apoptosis via sarcoplasmic reticulum Ca2+-ATPase (SERCA) is presented. Interaction of SERCA1 with MGX was investigated by molecular docking and experimentally in a cell-free system. MGX concentration- and time-dependently decreased SERCA1 activity. A significant increase of sarcoplasmic reticulum (SR) carbonylation was found in the concentration range of 1-10 mM caused by MGX and a decrease of thiol groups at the concentrations of 5 and 40 mM. Affinities of SERCA1 to ATP and Ca2+ were not influenced by MGX, however decreases of Vmax related to both binding sites were observed. Molecular docking indicated binding of MGX at the cytosolic region of SERCA1, inducing conformational changes in the cytosolic-transmembrane interface. This interaction resulted in conformational changes in the cytosolic region (FITC fluorescence decrease) as well as in the transmembrane region of SERCA1 (Trp fluorescence decrease) without direct binding to the cytosolic ATP or transmembrane Ca2+ binding sites. Regarding the MGX inhibitory effect in a cell-free system and similarities of SERCA1 to its other isoforms, proapoptotic properties of MGX may be expected in cellular systems. At cellular level, MGX induced a decrease of SERCA2b expression in the pancreatic INS-1E ß-cell line. This was accompanied by cell viability decrease, increase in apoptosis, impaired insulin secretion and elevation of basal intracellular Ca2+ levels. Decreased expression of SERCA2b may contribute to induction of apoptosis of pancreatic ß-cells.


Assuntos
Citotoxinas/toxicidade , Músculo Esquelético/enzimologia , Aldeído Pirúvico/toxicidade , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Músculo Esquelético/efeitos dos fármacos , Estrutura Secundária de Proteína , Coelhos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...