Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 10(7)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630280

RESUMO

Cellulose nanocrystals (CNCs) and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (T-CNFs) were tested as enhanced oil recovery (EOR) agents through core floods and microfluidic experiments. Both particles were mixed with low salinity water (LSW). The core floods were grouped into three parts based on the research objectives. In Part 1, secondary core flood using CNCs was compared to regular water flooding at fixed conditions, by reusing the same core plug to maintain the same pore structure. CNCs produced 5.8% of original oil in place (OOIP) more oil than LSW. For Part 2, the effect of injection scheme, temperature, and rock wettability was investigated using CNCs. The same trend was observed for the secondary floods, with CNCs performing better than their parallel experiment using LSW. Furthermore, the particles seemed to perform better under mixed-wet conditions. Additional oil (2.9-15.7% of OOIP) was produced when CNCs were injected as a tertiary EOR agent, with more incremental oil produced at high temperature. In the final part, the effect of particle type was studied. T-CNFs produced significantly more oil compared to CNCs. However, the injection of T-CNF particles resulted in a steep increase in pressure, which never stabilized. Furthermore, a filter cake was observed at the core face after the experiment was completed. Microfluidic experiments showed that both T-CNF and CNC nanofluids led to a better sweep efficiency compared to low salinity water flooding. T-CNF particles showed the ability to enhance the oil recovery by breaking up events and reducing the trapping efficiency of the porous medium. A higher flow rate resulted in lower oil recovery factors and higher remaining oil connectivity. Contact angle and interfacial tension measurements were conducted to understand the oil recovery mechanisms. CNCs altered the interfacial tension the most, while T-CNFs had the largest effect on the contact angle. However, the changes were not significant enough for them to be considered primary EOR mechanisms.

2.
Nanomaterials (Basel) ; 10(6)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580479

RESUMO

Many studies show how biomaterial properties like stiffness, mechanical stimulation and surface topography can influence cellular functions and direct stem cell differentiation. In this work, two different natural materials, gelatin (Gel) and cellulose nanofibrils (CNFs), were combined to design suitable 3D porous biocomposites for soft-tissue engineering. Gel was selected for its well-assessed high biomimicry that it shares with collagen, from which it derives, while the CNFs were chosen as structural reinforcement because of their exceptional mechanical properties and biocompatibility. Three different compositions of Gel and CNFs, i.e., with weight ratios of 75:25, 50:50 and 25:75, were studied. The biocomposites were morphologically characterized and their total- and macro- porosity assessed, proving their suitability for cell colonization. In general, the pores were larger and more isotropic in the biocomposites compared to the pure materials. The influence of freeze-casting and dehydrothermal treatment (DHT) on mechanical properties, the absorption ability and the shape retention were evaluated. Higher content of CNFs gave higher swelling, and this was attributed to the pore structure. Cross-linking between CNFs and Gel using DHT was confirmed. The Young's modulus increased significantly by adding the CNFs to Gel with a linear relationship with respect to the CNF amounts. Finally, the biocomposites were characterized in vitro by testing cell colonization and growth through a quantitative cell viability analysis performed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Additionally, the cell viability analysis was performed by the means of a Live/Dead test with Human mesenchymal stem cells (hMSCs). All the biocomposites had higher cytocompatibility compared to the pure materials, Gel and CNFs.

3.
Molecules ; 25(10)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443918

RESUMO

Wood-based TEMPO-oxidised cellulose nanofibrils (toCNF) are promising materials for biomedical applications. Cyclodextrins have ability to form inclusion complexes with hydrophobic molecules and are considered as a method to bring new functionalities to these materials. Water sorption and mechanical properties are also key properties for biomedical applications such as drug delivery and tissue engineering. In this work, we report the modification with ß-cyclodextrin (ßCD) of toCNF samples with different carboxyl contents viz. 756 ± 4 µmol/g and 1048 ± 32 µmol/g. The modification was carried out at neutral and acidic pH (2.5) to study the effect of dissociation of the carboxylic acid group. Films processed by casting/evaporation at 40 °C and cryogels processed by freeze-drying were prepared from ßCD modified toCNF suspensions and compared with reference samples of unmodified toCNF. The impact of modification on water sorption and mechanical properties was assessed. It was shown that the water sorption behaviour for films is driven by adsorption, with a clear impact of the chemical makeup of the fibres (charge content, pH, and adsorption of cyclodextrin). Modified toCNF cryogels (acidic pH and addition of cyclodextrins) displayed lower mechanical properties linked to the modification of the cell wall porosity structure. Esterification between ßCD and toCNF under acidic conditions was performed by freeze-drying, and such cryogels exhibited a lower decrease in mechanical properties in the swollen state. These results are promising for the development of scaffold and films with controlled mechanical properties and added value due to the ability of cyclodextrin to form an inclusion complex with active principle ingredient (API) or growth factor (GF) for biomedical applications.


Assuntos
Celulose Oxidada/química , Criogéis/química , Nanoestruturas/química , beta-Ciclodextrinas/química , Adsorção/efeitos dos fármacos , Óxidos N-Cíclicos/química , Liofilização , Nanofibras/química , Porosidade , Água/química
4.
Nanomaterials (Basel) ; 9(5)2019 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-31035570

RESUMO

Recent studies have discovered a substantial viscosity increase of aqueous cellulose nanocrystal (CNC) dispersions upon heat aging at temperatures above 90 °C. This distinct change in material properties at very low concentrations in water has been proposed as an active mechanism for enhanced oil recovery (EOR), as highly viscous fluid may improve macroscopic sweep efficiencies and mitigate viscous fingering. A high-temperature (120 °C) core flood experiment was carried out with 1 wt. % CNC in low salinity brine on a 60 cm-long sandstone core outcrop initially saturated with crude oil. A flow rate corresponding to 24 h per pore volume was applied to ensure sufficient viscosification time within the porous media. The total oil recovery was 62.2%, including 1.2% oil being produced during CNC flooding. Creation of local log-jams inside the porous media appears to be the dominant mechanism for additional oil recovery during nano flooding. The permeability was reduced by 89.5% during the core flood, and a thin layer of nanocellulose film was observed at the inlet of the core plug. CNC fluid and core flood effluent was analyzed using atomic force microscopy (AFM), particle size analysis, and shear rheology. The effluent was largely unchanged after passing through the core over a time period of 24 h. After the core outcrop was rinsed, a micro computed tomography (micro-CT) was used to examine heterogeneity of the core. The core was found to be homogeneous.

5.
Mater Sci Eng C Mater Biol Appl ; 94: 867-878, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423774

RESUMO

Biopolymers such as gelatin (Gel) and cellulose nanofibrils (CNF) have many of the essential requirements for being used as scaffolding materials in tissue regeneration; biocompatibility, surface chemistry, ability to generate homogeneous hydrogels and 3D structures with suitable pore size and interconnection, which allows cell colonization and proliferation. The purpose of this study was to investigate whether the mechanical behaviour of the Gel matrix can be improved by means of functionalization with cellulose nanofibrils and proper cross-linking treatments. Blending processes were developed to achieve a polymer nanocomposite incorporating the best features of both biopolymers: biomimicry of the Gel and structural reinforcement by the CNF. The designed 3D structures underline interconnected porosity achieved by freeze-drying process, improved mechanical properties and chemical stability that are tailored by CNF addition and different cross-linking approaches. In vitro evaluations reveal the preservation of the biocompatibility of Gel and its good interaction with cells by promoting cell colonization and proliferation. The results support the addition of cellulose nanofibrils to improve the mechanical behaviour of 3D porous structures suitable as scaffolding for tissue regeneration.


Assuntos
Celulose/química , Nanocompostos/química , Nanofibras/química , Polímeros/química , Regeneração , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Linhagem Celular , Forma Celular , Sobrevivência Celular , Força Compressiva , Reagentes de Ligações Cruzadas/química , Fibroblastos/citologia , Camundongos , Mitocôndrias/metabolismo , Nanocompostos/ultraestrutura , Nanofibras/ultraestrutura , Porosidade , Termogravimetria
6.
Nanomaterials (Basel) ; 8(7)2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30029511

RESUMO

The application of nanotechnology to the petroleum industry has sparked recent interest in increasing oil recovery, while reducing environmental impact. Nanocellulose is an emerging nanoparticle that is derived from trees or waste stream from wood and fiber industries. Thus, it is taken from a renewable and sustainable source, and could therefore serve as a good alternative to current Enhanced Oil Recovery (EOR) technologies. However, before nanocellulose can be applied as an EOR technique, further understanding of its transport behavior and retention in porous media is required. The research documented in this paper examines retention mechanisms that occur during nanocellulose transport. In a series of experiments, nanocellulose particles dispersed in brine were injected into sandpacks and Berea sandstone cores. The resulting retention and permeability reduction were measured. The experimental parameters that were varied include sand grain size, nanocellulose type, salinity, and flow rate. Under low salinity conditions, the dominant retention mechanism was adsorption and when salinity was increased, the dominant retention mechanism shifted towards log-jamming. Retention and permeability reduction increased as grain size decreased, which results from increased straining of nanocellulose aggregates. In addition, each type of nanocellulose was found to have significantly different transport properties. Experiments with Berea sandstone cores indicate that some pore volume was inaccessible to the nanocellulose. As a general trend, the larger the size of aggregates in bulk solution, the greater the observed retention and permeability reduction. Salinity was found to be the most important parameter affecting transport. Increased salinity caused additional aggregation, which led to increased straining and filter cake formation. Higher flow rates were found to reduce retention and permeability reduction. Increased velocity was accompanied by an increase in shear, which is believed to promote breakdown of nanocellulose aggregates.

7.
J Biol Chem ; 293(34): 13006-13015, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29967065

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that catalyze the oxidative cleavage of polysaccharides such as cellulose and chitin, a feature that makes them key tools in industrial biomass conversion processes. The catalytic domains of a considerable fraction of LPMOs and other carbohydrate-active enzymes (CAZymes) are tethered to carbohydrate-binding modules (CBMs) by flexible linkers. These linkers preclude X-ray crystallographic studies, and the functional implications of these modular assemblies remain partly unknown. Here, we used NMR spectroscopy to characterize structural and dynamic features of full-length modular ScLPMO10C from Streptomyces coelicolor We observed that the linker is disordered and extended, creating distance between the CBM and the catalytic domain and allowing these domains to move independently of each other. Functional studies with cellulose nanofibrils revealed that most of the substrate-binding affinity of full-length ScLPMO10C resides in the CBM. Comparison of the catalytic performance of full-length ScLPMO10C and its isolated catalytic domain revealed that the CBM is beneficial for LPMO activity at lower substrate concentrations and promotes localized and repeated oxidation of the substrate. Taken together, these results provide a mechanistic basis for understanding the interplay between catalytic domains linked to CBMs in LPMOs and CAZymes in general.


Assuntos
Celulose/química , Polissacarídeos Fúngicos/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Streptomyces coelicolor/enzimologia , Domínio Catalítico , Celulose/metabolismo , Cristalografia por Raios X , Polissacarídeos Fúngicos/química , Modelos Moleculares , Oxirredução , Conformação Proteica
8.
Carbohydr Polym ; 157: 114-121, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-27987816

RESUMO

Cellulose nanofibrils (CNF) have potential as rheology modifiers of water based fluids, e.g. drilling fluids for use in oil wells or as additives in injection water for enhanced oil recovery (EOR). The temperature in oil wells can be high (>100°C), and the retention time long; days for drilling fluids and months for EOR fluids. Hence, it is important to assess the temperature stability over time of nanocellulose dispersions to clarify their suitability as rheology modifiers of water based fluids at such harsh conditions. Dispersions of CNF produced mechanically, by using TEMPO mediated oxidation and by using carboxymethylation as pretreatment, in addition to cellulose nanocrystals (CNC), have been subjected to heat aging. Temperature stability was best for CNC and for mechanically produced CNF that were stable after heating to 140°C for three days. The effect of additives was evaluated; cesium formate and sodium formate increased the temperature stability of the dispersions, while there was no effect of using phosphate buffer.

9.
Biomacromolecules ; 13(6): 1733-41, 2012 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-22376136

RESUMO

Chitooligosaccharides (CHOS) are oligomers composed of glucosamine and N-acetylglucosamine with several interesting bioactivities that can be produced from enzymatic cleavage of chitosans. By controlling the degree of acetylation of the substrate chitosan, the enzyme, and the extent of enzyme degradation, CHOS preparations with limited variation in length and sequence can be produced. We here report on the degradation of chitosans with a novel family 75 chitosanase, SaCsn75A from Streptomyces avermitilis . By characterizing the CHOS preparations, we have obtained insight into the mode of action and subsite specificities of the enzyme. The degradation of a fully deacetylated and a 31% acetylated chitosan revealed that the enzyme degrade these substrates according to a nonprocessive, endo mode of action. With the 31% acetylated chitosan as substrate, the kinetics of the degradation showed an initial rapid phase, followed by a second slower phase. In the initial faster phase, an acetylated unit (A) is productively bound in subsite -1, whereas deacetylated units (D) are bound in the -2 subsite and the +1 subsite. In the slower second phase, D-units bind productively in the -1 subsite, probably with both acetylated and deacetylated units in the -2 subsite, but still with an absolute preference for deacetylated units in the +1 subsite. CHOS produced in the initial phase are composed of deacetylated units with an acetylated reducing end. In the slower second phase, higher amounts of low DP fully deacetylated oligomers (dimer and trimer) are produced, while the higher DP oligomers are dominated by compounds with acetylated reducing ends containing increasing amounts of internal acetylated units. The degradation of chitosans with varying degrees of acetylation to maximum extents of degradation showed that increasingly longer oligomers are produced with increasing degree of acetylation, and that the longer oligomers contain sequences of consecutive acetylated units interspaced by single deacetylated units. The catalytic properties of SaCsn75A differ from the properties of a previously characterized family 46 chitosanase from S. coelicolor (ScCsn46A).


Assuntos
Glicosídeo Hidrolases/metabolismo , Streptomyces/enzimologia , Sequência de Aminoácidos , Quitosana/química , Quitosana/metabolismo , Glicosídeo Hidrolases/química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Dados de Sequência Molecular , Alinhamento de Sequência
10.
Biomacromolecules ; 11(9): 2487-97, 2010 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-20831280

RESUMO

We have studied the degradation of well-characterized soluble heteropolymeric chitosans by a novel family 46 chitosanase, ScCsn46A from Streptomyces coelicolor A3(2), to obtain insight into the enzyme's mode of action and to determine its potential for production of different chitooligosaccharides. The degradation of both a fully deacetylated chitosan and a 32% acetylated chitosan showed a continuum of oligomeric products and a rapid disappearance of the polymeric fraction, which is diagnostic for a nonprocessive endomode of action. The kinetics of the degradation of the 32% acetylated chitosan demonstrated an initial rapid phase and a slower second phase, in addition to a third and even slower kinetic phase. The first phase reflects the cleavage of the glycosidic linkage between two deacetylated units (D-D), the primary products being fully deacetylated dimers, trimers, and tetramers, as well as longer oligomers with increasing degrees of acetylation. In the subsequent slower kinetic phases, oligomers with a higher degree of acetylated units (A) appear, including oligomers with A's at the reducing or nonreducing end, which indicate that there are no absolute preferences for D in subsites -1 and +1. After maximum degradation of the chitosan, the dimers DA and DD were the dominant products. The degradation of chitosans with varying degrees of acetylation to a maximum degree of scission showed that ScCsn46A could degrade all chitosan substrates extensively, although to decreasing degrees of scission with increasing F(A). The potential use of ScCsn46A to prepare fully deacetylated oligomers and more highly acetylated oligomers from chitosan substrates with varying degrees of acetylation is discussed.


Assuntos
Materiais Biocompatíveis/metabolismo , Quitinases/metabolismo , Quitosana/metabolismo , Proteínas Recombinantes/metabolismo , Streptomyces coelicolor/enzimologia , Acetilação , Materiais Biocompatíveis/química , Quitinases/química , Quitinases/isolamento & purificação , Quitosana/química , Cromatografia em Gel , DNA Bacteriano/genética , Espectroscopia de Ressonância Magnética , Oligossacarídeos/metabolismo , Proteínas Recombinantes/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
Mar Drugs ; 8(5): 1482-517, 2010 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-20559485

RESUMO

Chitooligosaccharides (CHOS) are homo- or heterooligomers of N-acetylglucosamine and D-glucosamine. CHOS can be produced using chitin or chitosan as a starting material, using enzymatic conversions, chemical methods or combinations thereof. Production of well-defined CHOS-mixtures, or even pure CHOS, is of great interest since these oligosaccharides are thought to have several interesting bioactivities. Understanding the mechanisms underlying these bioactivities is of major importance. However, so far in-depth knowledge on the mode-of-action of CHOS is scarce, one major reason being that most published studies are done with badly characterized heterogeneous mixtures of CHOS. Production of CHOS that are well-defined in terms of length, degree of N-acetylation, and sequence is not straightforward. Here we provide an overview of techniques that may be used to produce and characterize reasonably well-defined CHOS fractions. We also present possible medical applications of CHOS, including tumor growth inhibition and inhibition of T(H)2-induced inflammation in asthma, as well as use as a bone-strengthener in osteoporosis, a vector for gene delivery, an antibacterial agent, an antifungal agent, an anti-malaria agent, or a hemostatic agent in wound-dressings. By using well-defined CHOS-mixtures it will become possible to obtain a better understanding of the mechanisms underlying these bioactivities.


Assuntos
Quitina/química , Quitosana/química , Oligossacarídeos/química , Oligossacarídeos/uso terapêutico , Quitina/isolamento & purificação , Quitina/metabolismo , Quitinases/antagonistas & inibidores , Quitinases/química , Quitinases/isolamento & purificação , Quitinases/metabolismo , Quitosana/isolamento & purificação , Quitosana/metabolismo , Humanos , Oligossacarídeos/síntese química , Oligossacarídeos/isolamento & purificação
12.
Biomacromolecules ; 10(4): 892-9, 2009 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-19222164

RESUMO

We have studied the degradation of soluble heteropolymeric chitosans with a bacterial family 19 chitinase, ChiG from Streptomyces coelicolor A3(2), to obtain insight into the mode of action of ChiG, to determine subsite preferences for acetylated and deacetylated sugar units, and to evaluate the potential of ChiG for production of chito-oligosaccharides. Degradation of chitosans with varying degrees of acetylation was followed using NMR for the identity (acetylated/deacetylated) of new reducing and nonreducing ends as well as their nearest neighbors and using gel filtration to analyze the size distribution of the oligomeric products. Degradation of a 64% acetylated chitosan yielded a continuum of oligomers, showing that ChiG operates according to a nonprocessive, endo mode of action. The kinetics of the degradation showed an initial rapid phase dominated by cleavage of three consecutive acetylated units (A; occupying subsites -2, -1, and +1), and a slower kinetic phase reflecting the cleavage of the glycosidic linkage between a deacetylated unit (D, occupying subsite -1) and an A (occupying subsite +1). Characterization of isolated oligomer fractions obtained at the end of the initial rapid phase and at the end of the slower kinetic phase confirmed the preference for A binding in subsites -2, -1, and +1 and showed that oligomers with a deacetylated reducing end appeared only during the second kinetic phase. After maximum conversion of the chitosan, the dimers AD/AA and the trimer AAD were the dominating products. Degradation of chitosans with varying degrees of acetylation to maximum degree of scission produced a wide variety of oligomer mixtures, differing in chain length and composition of acetylated/deacetylated units. These results provide insight into the properties of bacterial family 19 chitinases and show how these enzymes may be used to convert chitosans to several types of chito-oligosaccharide mixtures.


Assuntos
Materiais Biocompatíveis/metabolismo , Quitinases/metabolismo , Quitosana/metabolismo , Oligossacarídeos/metabolismo , Streptomyces coelicolor/enzimologia , Acetilação , Animais , Materiais Biocompatíveis/química , Quitinases/química , Quitinases/isolamento & purificação , Quitosana/química , Cromatografia em Gel , Decápodes/química , Espectroscopia de Ressonância Magnética , Especificidade por Substrato
13.
FEBS J ; 273(21): 4889-900, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17010167

RESUMO

We describe the cloning, overexpression, purification, characterization and crystal structure of chitinase G, a single-domain family 19 chitinase from the Gram-positive bacterium Streptomyces coelicolor A3(2). Although chitinase G was not capable of releasing 4-methylumbelliferyl from artificial chitooligosaccharide substrates, it was capable of degrading longer chitooligosaccharides at rates similar to those observed for other chitinases. The enzyme was also capable of degrading a colored colloidal chitin substrate (carboxymethyl-chitin-remazol-brilliant violet) and a small, presumably amorphous, subfraction of alpha-chitin and beta-chitin, but was not capable of degrading crystalline chitin completely. The crystal structures of chitinase G and a related Streptomyces chitinase, chitinase C [Kezuka Y, Ohishi M, Itoh Y, Watanabe J, Mitsutomi M, Watanabe T & Nonaka T (2006) J Mol Biol358, 472-484], showed that these bacterial family 19 chitinases lack several loops that extend the substrate-binding grooves in family 19 chitinases from plants. In accordance with these structural features, detailed analysis of the degradation of chitooligosaccharides by chitinase G showed that the enzyme has only four subsites (- 2 to + 2), as opposed to six (- 3 to + 3) for plant enzymes. The most prominent structural difference leading to reduced size of the substrate-binding groove is the deletion of a 13-residue loop between the two putatively catalytic glutamates. The importance of these two residues for catalysis was confirmed by a site-directed mutagenesis study.


Assuntos
Proteínas de Bactérias/química , Quitinases/química , Streptomyces coelicolor/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Domínio Catalítico , Quitina/metabolismo , Quitinases/genética , Cristalização , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Oligossacarídeos/química , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...