Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38329817

RESUMO

Lung macrophages constitute a sophisticated surveillance and defense system that contributes to tissue homeostasis, host defense, and allows the host to cope with the myriad of insults and antigens to which the lung mucosa is exposed. As opposed to alveolar macrophages, lung interstitial macrophages express high levels of type 2 major histocompatibility complex (MHC-II), a hallmark of antigen-presenting cells. Here, we showed that lung IMs, like dendritic cells (DCs), possess the machinery to present soluble antigens in an MHC-II-restricted way. Using ex vivo ovalbumin (OVA)-specific T cell proliferation assays, we found that OVA-pulsed IMs could trigger OVA-specific CD4+ T cell proliferation and Foxp3 expression via MHC-II-, IL-10 and Tgfß-dependent mechanisms. Moreover, we showed that IMs efficiently captured locally instilled antigens in vivo, did not migrate to the draining lymph nodes and enhanced local interactions with CD4+ T cells in a model of OVA-induced allergic asthma. These results support that IMs can present antigens to CD4+ T cells and trigger regulatory T cells, which might attenuate lung immune responses and have functional consequences for lung immunity and T-cell-mediated disorders.

2.
Infection ; 51(5): 1305-1317, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36696043

RESUMO

PURPOSE: Sepsis in critically ill patients with injury bears a high morbidity and mortality. Extensive phenotypic monitoring of leucocyte subsets in critically ill patients at ICU admission and during sepsis development is still scarce. The main objective of this study was to identify early changes in leukocyte phenotype which would correlate with later development of sepsis. METHODS: Patients who were admitted in a tertiary ICU for organ support after severe injury (elective cardiac surgery, trauma, necessity of prolonged ventilation or stroke) were sampled on admission (T1) and 48-72 h later (T2) for phenotyping of leukocyte subsets by flow cytometry and cytokines measurements. Those who developed secondary sepsis or septic shock were sampled again on the day of sepsis diagnosis (Tx). RESULTS: Ninety-nine patients were included in the final analysis. Nineteen (19.2%) patients developed secondary sepsis or septic shock. They presented significantly higher absolute monocyte counts and CRP at T1 compared to non-septic patients (1030/µl versus 550/µl, p = 0.013 and 5.1 mg/ml versus 2.5 mg/ml, p = 0.046, respectively). They also presented elevated levels of monocytes with low expression of L-selectin (CD62Lneg monocytes) (OR[95%CI] 4.5 (1.4-14.5), p = 0.01) and higher SOFA score (p < 0.0001) at T1 and low mHLA-DR at T2 (OR[95%CI] 0.003 (0.00-0.17), p = 0.049). Stepwise logistic regression analysis showed that both monocyte markers and high SOFA score (> 8) were independently associated with nosocomial sepsis occurrence. No other leucocyte count or surface marker nor any cytokine measurement correlated with sepsis occurrence. CONCLUSION: Monocyte counts and change of phenotype are associated with secondary sepsis occurrence in critically ill patients with injury.


Assuntos
Sepse , Choque Séptico , Humanos , Antígenos HLA-DR/genética , Antígenos HLA-DR/metabolismo , Projetos Piloto , Estudos Prospectivos , Citometria de Fluxo , Estado Terminal , Sepse/diagnóstico , Monócitos
3.
Front Immunol ; 13: 921077, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911691

RESUMO

Asthma encompasses a spectrum of heterogenous immune-mediated respiratory disorders sharing a similar clinical pattern characterized by cough, wheeze and exercise intolerance. In horses, equine asthma can be subdivided into severe or moderate asthma according to clinical symptoms and the extent of airway neutrophilic inflammation. While severe asthmatic horses are characterized by an elevated neutrophilic inflammation of the lower airways, cough, dyspnea at rest and high mucus secretion, horses with moderate asthma show a milder neutrophilic inflammation, exhibit intolerance to exercise but no labored breathing at rest. Yet, the physiopathology of different phenotypes of equine asthma remains poorly understood and there is a need to elucidate the underlying mechanisms tailoring those phenotypes in order to improve clinical management and elaborate novel therapeutic strategies. In this study, we sought to quantify the presence of neutrophil extracellular traps (NETs) in bronchoalveolar lavage fluids (BALF) of moderate or severe asthmatic horses and healthy controls, and assessed whether NETs correlated with disease severity. To this end, we evaluated the amounts of NETs by measuring cell-free DNA and MPO-DNA complexes in BALF supernatants or by quantifying NETs release by BALF cells by confocal microscopy. We were able to unequivocally identify elevated NETs levels in BALF of severe asthmatic horses as compared to healthy controls or moderate asthmatic horses. Moreover, we provided evidence that BALF NETs release was a specific feature seen in severe equine asthma, as opposed to moderate asthma, and correlated with disease severity. Finally, we showed that NETs could act as a predictive factor for severe equine asthma. Our study thus uniquely identifies NETs in BALF of severe asthmatic horses using three distinct methods and supports the idea that moderate and severe equine asthma do not rely on strictly similar pathophysiological mechanisms. Our data also suggest that NETs represent a relevant biomarker, a putative driver and a potential therapeutic target in severe asthma disease.


Assuntos
Asma , Armadilhas Extracelulares , Animais , Asma/patologia , Asma/veterinária , Líquido da Lavagem Broncoalveolar , Tosse/patologia , Tosse/veterinária , Cavalos , Inflamação/patologia , Inflamação/veterinária , Neutrófilos/patologia , Gravidade do Paciente
4.
Methods Mol Biol ; 2506: 281-295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35771479

RESUMO

Neutrophil extracellular traps (NETs) have the ability to regulate many aspects of asthma pathology. NETs can be detected either in bronchoalveolar lavage fluids (BALF) or in lung biopsies. Here, we describe methods to quantify NETs in BALF, namely the quantification of cell-free DNA, or of myeloperoxidase (MPO) or neutrophil elastase (NE) complexed with cell-free DNA. We also explain how to detect NETs in lung biopsies by two distinct techniques. The first technique is based on quantification of the citrullinated form of histone 3 (Cit-H3 , a specific component of NET) by western blot on tissue protein extracts. The second technique is based on the visualization of extracellular structures composed of MPO co-localizing with Cit-H3 in tissue sections by confocal microscopy. Finally, we describe a method allowing for quantification of NET volume in lung sections.


Assuntos
Asma , Ácidos Nucleicos Livres , Armadilhas Extracelulares , Asma/diagnóstico , Asma/metabolismo , Líquido da Lavagem Broncoalveolar , Ácidos Nucleicos Livres/metabolismo , Armadilhas Extracelulares/metabolismo , Humanos , Neutrófilos/metabolismo , Peroxidase/metabolismo
5.
Bio Protoc ; 11(18): e4159, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34692909

RESUMO

Neutrophils are one of the first innate immune cells recruited to tissues during inflammation. An important function of neutrophils relies on their ability to release extracellular structures, known as Neutrophil Extracellular Traps or NETs, into their environment. Detecting such NETs in humans has often proven challenging for both biological fluids and tissues; however, this can be achieved by quantitating NET components (e.g., DNA or granule/histone proteins) or by directly visualizing them by microscopy, respectively. Direct visualization by confocal microscopy is preferably performed on formalin-fixed paraffin-embedded (FFPE) tissue sections stained with a fluorescent DNA dye and antibodies directed against myeloperoxidase (MPO) and citrullinated histone 3 (Cit-H3), two components of NETs, following paraffin removal, antigen retrieval, and permeabilization. NETs are defined as extracellular structures that stain double-positive for MPO and Cit-H3. Here, we propose a novel software-based objective method for NET volume quantitation in tissue sections based on the measurement of the volume of structures exhibiting co-localization of Cit-H3 and MPO outside the cell. Such a technique not only allows the unambiguous identification of NETs in tissue sections but also their quantitation and relationship with surrounding tissues. Graphic abstract: Graphical representation of the methodology used to stain and quantitate NETs in human lung tissue.

6.
Sci Rep ; 11(1): 5817, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712680

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic hepatic pathology in Western countries. It encompasses a spectrum of conditions ranging from simple steatosis to more severe and progressive non-alcoholic steatohepatitis (NASH) that can lead to hepatocellular carcinoma (HCC). Obesity and related metabolic syndrome are important risk factors for the development of NAFLD, NASH and HCC. DUSP3 is a small dual-specificity protein phosphatase with a poorly known physiological function. We investigated its role in metabolic syndrome manifestations and in HCC using a mouse knockout (KO) model. While aging, DUSP3-KO mice became obese, exhibited insulin resistance, NAFLD and associated liver damage. These phenotypes were exacerbated under high fat diet (HFD). In addition, DEN administration combined to HFD led to rapid HCC development in DUSP3-KO compared to wild type (WT) mice. DUSP3-KO mice had more serum triglycerides, cholesterol, AST and ALT compared to control WT mice under both regular chow diet (CD) and HFD. The level of fasting insulin was higher compared to WT mice, though, fasting glucose as well as glucose tolerance were normal. At the molecular level, HFD led to decreased expression of DUSP3 in WT mice. DUSP3 deletion was associated with increased and consistent phosphorylation of the insulin receptor (IR) and with higher activation of the downstream signaling pathway. In conclusion, our results support a new role for DUSP3 in obesity, insulin resistance, NAFLD and liver damage.


Assuntos
Carcinoma Hepatocelular/genética , Fosfatase 3 de Especificidade Dupla/genética , Neoplasias Hepáticas/genética , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/genética , Animais , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Hepatocelular/patologia , Deleção de Genes , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/patologia
8.
Cancers (Basel) ; 12(6)2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32575867

RESUMO

Pancreas ductal adenocarcinoma is one of the deadliest cancers where surgery remains the main survival factor. Mitochondria were described to be involved in tumor aggressiveness in several cancer types including pancreas cancer. We have previously reported that myoferlin controls mitochondrial structure and function, and demonstrated that myoferlin depletion disturbs the mitochondrial dynamics culminating in a mitochondrial fission. In order to unravel the mechanism underlying this observation, we explored the myoferlin localization in pancreatic cancer cells and showed a colocalization with the mitochondrial dynamic machinery element: mitofusin. This colocalization was confirmed in several pancreas cancer cell lines and in normal cell lines as well. Moreover, in pancreas cancer cell lines, it appeared that myoferlin interacted with mitofusin. These discoveries open-up new research avenues aiming at modulating mitofusin function in pancreas cancer.

9.
Int J Mol Sci ; 21(11)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503311

RESUMO

Several clinical reports indicate that the use of amphetaminic anorectic drugs or ergot derivatives could cause valvular heart disease (VHD). We sought to investigate whether valvular lesions develop in response to long-term oral administration of these drugs and to identify drug-targeted biological processes that may lead to VHD. Treatment of New Zealand White rabbits with pergolide, dexfenfluramine, or high-dose serotonin for 16 weeks induced valvular alterations characterized by extracellular matrix remodeling. Transcriptome profiling of tricuspid valves using RNA sequencing revealed distinct patterns of differentially expressed genes (DEGs) that clustered according to the different treatments. Genes that were affected by the three treatments were functionally enriched for reduced cell metabolism processes. The two drugs yielded more changes in gene expression than serotonin and shared most of the DEGs. These DEGs were mostly enriched for decreased biosynthetic processes, increased cell-matrix interaction, and cell response to growth factors, including TGF-ß, which was associated with p38 MAPK activation. Treatment with pergolide specifically affected genes involved in homeostasis, which was corroborated by the activation of the master regulator of cell energy homeostasis, AMPK-α, as well as decreased levels of metabolism-related miR-107. Thus, both pergolide and dexfenfluramine may cause VHD through valve metabolic reprogramming and matrix remodeling.


Assuntos
Dexfenfluramina/efeitos adversos , Matriz Extracelular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Doenças das Valvas Cardíacas/induzido quimicamente , Pergolida/efeitos adversos , Valva Tricúspide/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Administração Oral , Animais , Proliferação de Células , Análise por Conglomerados , Ativação Enzimática , Feminino , Doenças das Valvas Cardíacas/metabolismo , Doenças das Valvas Cardíacas/patologia , Homeostase , MicroRNAs/genética , Coelhos , Análise de Sequência de RNA , Serotonina/efeitos adversos , Transcriptoma , Fator de Crescimento Transformador beta/metabolismo , Valva Tricúspide/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Platelets ; 31(2): 221-225, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30915890

RESUMO

Platelet-rich plasma (PRP) is increasingly used in the treatment of musculoskeletal diseases. Its preservation by freezing it for the realization of multiple injections in clinical use has never been discussed. Calcaneal tendons of rats were surgically sectioned. Platelet concentration of the PRP was 2.5 x 106/µl with autologous plasma of rats. Frozen-thawed PRP was prepared by performing two cycles of freezing and thawing on PRP aliquots. Both platelet preparations were injected in the lesion. Biomechanical and histological evaluations were carried out after 7, 20 or 40 days post surgery. After 7 and 40 days, no significant difference was observed between the PRP and the frozen-thawed PRP group. There is however a difference 20 days after surgery: the ultimate tensile strength (UTS) was greater in the fresh PRP group. No obvious difference with histological aspect was observed between the two groups. In conclusion, fresh PRP and frozen-thawed PRP injections can lead to similar results in the healing process of section calcaneal tendons of rats. Improvements with fresh PRP are slight. PRP could thus be frozen to be preserved if multiple injections are needed (e.g. osteoarthritis).


Assuntos
Plasma Rico em Plaquetas/química , Tendões/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
11.
J Thromb Haemost ; 18(1): 44-56, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31448510

RESUMO

BACKGROUND: Intestinal inflammation is associated with bleeding and thrombosis, two processes that may involve both platelets and neutrophils. However, the mechanisms and the respective contribution of these cells to intestinal bleeding and extra-intestinal thrombosis remain largely unknown. OBJECTIVE: Our study aimed at investigating the mechanisms underlying the maintenance of vascular integrity and thrombosis in intestinal inflammation. METHODS: We used a mouse model of acute colitis induced by oral administration of dextran sodium sulfate (DSS) for 7 days. Bleeding was assessed after depletion of platelets, neutrophils, or glycoprotein VI (GPVI); treatment with aspirin or clopidogrel; or in P2X1-deficient mice. Extra-intestinal thrombosis was analyzed using a laser-induced injury model of thrombosis in cremaster muscle arterioles. RESULTS: Platelet depletion or P2X1 deficiency led to macrocytic regenerative anemia due to intestinal hemorrhage. In contrast, GPVI, P2Y12, and thromboxane A2 were dispensable. Platelet P-selectin expression and regulated on activation, normal T-cell expressed and secreted (RANTES) plasma levels were lower in DSS-treated P2X1-deficient mice as compared to wild-type mice, indicative of a platelet secretion defect. Circulating neutrophils had a more activated phenotype, and neutrophil infiltration in the colon was increased. P2X1-deficient mice also had elevated plasma granulocyte-colony stimulating factor (G-CSF) levels. Neutrophil depletion limited blood loss in these mice, whereas exogenous administration of G-CSF in colitic wild-type mice caused macrocytic anemia. Anemic colitic P2X1-deficient mice formed atypical neutrophil- and fibrin-rich, and platelet-poor thrombi upon arteriolar endothelial injury. CONCLUSIONS: Platelets and P2X1 ion channels are mandatory to preserve vascular integrity in inflamed intestine. Upon P2X1 deficiency, neutrophils contribute to bleeding and they may also be responsible for enhanced thrombosis.


Assuntos
Hemorragia , Intestinos/fisiopatologia , Receptores Purinérgicos P2X1 , Trombose , Animais , Plaquetas , Hemorragia/induzido quimicamente , Camundongos
12.
JACC Basic Transl Sci ; 4(5): 596-610, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31768476

RESUMO

Adenosine monophosphate-activated protein kinase (AMPK) acetyl-CoA carboxylase (ACC) signaling is activated in platelets by atherogenic lipids, particularly by oxidized low-density lipoproteins, through a CD36-dependent pathway. More interestingly, increased platelet AMPK-induced ACC phosphorylation is associated with the severity of coronary artery calcification as well as acute coronary events in coronary artery disease patients. Therefore, AMPK-induced ACC phosphorylation is a potential marker for risk stratification in suspected coronary artery disease patients. The inhibition of ACC resulting from its phosphorylation impacts platelet lipid content by down-regulating triglycerides, which in turn may affect platelet function.

13.
Artif Organs ; 43(8): 719-727, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30706485

RESUMO

Low flow extracorporeal veno-venous CO2 removal (ECCO2 R) therapy is used to remove CO2 while reducing ventilation intensity. However, the use of this technique is limited because efficiency of CO2 removal and potential beneficial effects on pulmonary hemodynamics are not precisely established. Moreover, this technique requires anticoagulation that may induce severe complications in critically ill patients. Therefore, our study aimed at determining precise efficiency of CO2 extraction and its effects on right ventricular (RV) afterload, and comparing regional anticoagulation with citrate to systemic heparin anticoagulation during ECCO2 R. This study was performed in an experimental model of severe hypercapnic acidosis performed in two groups of three pigs. In the first group (heparin group), pigs were anticoagulated with a standard protocol of unfractionated heparin while citrate was used for ECCO2 R device anticoagulation in the second group (citrate group). After sedation, analgesia and endotracheal intubation, pigs were connected to a volume-cycled ventilator. Severe hypercapnic acidosis was obtained by reducing tidal volume by 60%. ECCO2 R was started in both groups when arterial pH was lower than 7.2. Pump Assisted Lung Protection (PALP, Maquet, Rastatt, Germany) system was used to remove CO2 . CO2 extraction, arterial pH, PaCO2 as well as systemic and pulmonary hemodynamic were continuously followed. Mean arterial pH was normalized to 7.37 ± 1.4 at an extracorporeal blood flow of 400 mL/min, coming from 7.11 ± 1.3. RV end-systolic pressure increased by over 30% during acute hypercapnic acidosis and was normalized in parallel with CO2 removal. CO2 extraction was not significantly increased in citrate group as compared to heparin group. Mean ionized calcium and MAP were significantly lower in the citrate group than in the heparin group during ECCO2 R (1.03 ± 0.20 vs. 1.33 ± 0.19 and 57 ± 14 vs. 68 ± 15 mm Hg, respectively). ECCO2 R was highly efficient to normalize pH and PaCO2 and to reduce RV afterload resulting from hypercapnic acidosis. Regional anticoagulation with citrate solution was as effective as standard heparin anticoagulation but did not improve CO2 removal and lead to more hypocalcemia and hypotension.


Assuntos
Acidose/terapia , Anticoagulantes/uso terapêutico , Dióxido de Carbono/isolamento & purificação , Citratos/uso terapêutico , Oxigenação por Membrana Extracorpórea/métodos , Hipercapnia/terapia , Acidose/etiologia , Animais , Feminino , Heparina/uso terapêutico , Hipercapnia/complicações , Masculino , Respiração Artificial/métodos , Suínos
14.
Blood ; 132(11): 1180-1192, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30018077

RESUMO

AMP-activated protein kinase (AMPK) α1 is activated in platelets on thrombin or collagen stimulation, and as a consequence, phosphorylates and inhibits acetyl-CoA carboxylase (ACC). Because ACC is crucial for the synthesis of fatty acids, which are essential for platelet activation, we hypothesized that this enzyme plays a central regulatory role in platelet function. To investigate this, we used a double knock-in (DKI) mouse model in which the AMPK phosphorylation sites Ser79 on ACC1 and Ser212 on ACC2 were mutated to prevent AMPK signaling to ACC. Suppression of ACC phosphorylation promoted injury-induced arterial thrombosis in vivo and enhanced thrombus growth ex vivo on collagen-coated surfaces under flow. After collagen stimulation, loss of AMPK-ACC signaling was associated with amplified thromboxane generation and dense granule secretion. ACC DKI platelets had increased arachidonic acid-containing phosphatidylethanolamine plasmalogen lipids. In conclusion, AMPK-ACC signaling is coupled to the control of thrombosis by specifically modulating thromboxane and granule release in response to collagen. It appears to achieve this by increasing platelet phospholipid content required for the generation of arachidonic acid, a key mediator of platelet activation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/metabolismo , Plaquetas/enzimologia , Transdução de Sinais , Trombose/enzimologia , Proteínas Quinases Ativadas por AMP/genética , Acetil-CoA Carboxilase/genética , Animais , Plaquetas/patologia , Técnicas de Introdução de Genes , Camundongos , Camundongos Knockout , Fosforilação/genética , Trombose/genética , Trombose/patologia
15.
Front Cardiovasc Med ; 5: 46, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868612

RESUMO

Aortic Valve Disease (AVD) is the most common Valvular Heart Disease (VHD), affecting millions of people worldwide. Severe AVD is treated in most cases with prosthetic aortic valve replacement, which involves the substitution of the native aortic valve with a prosthetic one. In this review we will discuss the different types of prosthetic aortic valves available for implantation and the challenges faced by patients, medical doctors, researchers and manufacturers, as well as the approaches that are taken to overcome them.

16.
Front Cardiovasc Med ; 5: 21, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29594151

RESUMO

Calcific Aortic Valve Disease (CAVD) is the most common heart valve disease and its incidence is expected to rise with aging population. No medical treatment so far has shown slowing progression of CAVD progression. Surgery remains to this day the only way to treat it. Effective drug therapy can only be achieved through a better insight into the pathogenic mechanisms underlying CAVD. The cellular and molecular events leading to leaflets calcification are complex. Upon endothelium cell damage, oxidized LDLs trigger a proinflammatory response disrupting healthy cross-talk between valve endothelial and interstitial cells. Therefore, valve interstitial cells transform into osteoblasts and mineralize the leaflets. Studies have investigated signaling pathways driving and connecting lipid metabolism, inflammation and osteogenesis. This review draws a summary of the recent advances and discusses their exploitation as promising therapeutic targets to treat CAVD and reduce valve replacement.

17.
Intensive Care Med Exp ; 5(1): 32, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28699088

RESUMO

BACKGROUND: Platelets have been involved in both immune surveillance and host defense against severe infection. To date, whether platelet phenotype or other hemostasis components could be associated with predisposition to sepsis in critical illness remains unknown. The aim of this work was to identify platelet markers that could predict sepsis occurrence in critically ill injured patients. METHODS: This single-center, prospective, observational, 7-month study was based on a cohort of 99 non-infected adult patients admitted to ICUs for elective cardiac surgery, trauma, acute brain injury, and post-operative prolonged ventilation and followed up during ICU stay. Clinical characteristics and severity score (SOFA) were recorded on admission. Platelet activation markers, including fibrinogen binding to platelets, platelet membrane P-selectin expression, plasma soluble CD40L, and platelet-leukocytes aggregates were assayed by flow cytometry at admission and 48 h later, and then at the time of sepsis diagnosis (Sepsis-3 criteria) and 7 days later for sepsis patients. Hospitalization data and outcomes were also recorded. METHODS: Of the 99 patients, 19 developed sepsis after a median time of 5 days. These patients had a higher SOFA score at admission; levels of fibrinogen binding to platelets (platelet-Fg) and of D-dimers were also significantly increased compared to the other patients. Levels 48 h after ICU admission no longer differed between the two patient groups. Platelet-Fg % was an independent predictor of sepsis (P = 0.0031). By ROC curve analysis, cutoff point for Platelet-Fg (AUC = 0.75) was 50%. In patients with a SOFA cutoff of 8, the risk of sepsis reached 87% when Platelet-Fg levels were above 50%. Patients with sepsis had longer ICU and hospital stays and higher death rate. CONCLUSIONS: Platelet-bound fibrinogen levels assayed by flow cytometry within 24 h of ICU admission help identifying critically ill patients at risk of developing sepsis.

18.
Methods Mol Biol ; 1447: 301-30, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27514813

RESUMO

Platelets are small blood cells derived from cytoplasmic fragments of megakaryocytes and play an essential role in thrombosis and hemostasis. Platelet activation depends on the rapid phosphorylation and dephosphorylation of key signaling molecules, and a number of kinases and phosphatases have been identified as major regulators of platelet function. However, the investigation of novel signaling proteins has suffered from technical limitations due to the anucleate nature of platelets and their very limited levels of mRNA and de novo protein synthesis. In the past, experimental methods were restricted to the generation of genetically modified mice and the development of specific antibodies. More recently, novel (phospho)proteomic technologies and pharmacological approaches using specific small-molecule inhibitors have added additional capabilities to investigate specific platelet proteins.In this chapter, we report methods for using genetic and pharmacological approaches to investigate the function of platelet signaling proteins. While the described experiments focus on the role of the dual-specificity phosphatase 3 (DUSP3) in platelet signaling, the presented methods are applicable to any signaling enzyme. Specifically, we describe a testing strategy that includes (1) aggregation and secretion experiments with mouse and human platelets, (2) immunoprecipitation and immunoblot assays to study platelet signaling events, (3) detailed protocols to use selected animal models in order to investigate thrombosis and hemostasis in vivo, and (4) strategies for utilizing pharmacological inhibitors on human platelets.


Assuntos
Hemostasia , Ativação Plaquetária , Proteínas Tirosina Fosfatases/metabolismo , Trombose/enzimologia , Animais , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Plaquetas/enzimologia , Plaquetas/metabolismo , Modelos Animais de Doenças , Fosfatase 3 de Especificidade Dupla/antagonistas & inibidores , Fosfatase 3 de Especificidade Dupla/metabolismo , Inibidores Enzimáticos/farmacologia , Citometria de Fluxo/métodos , Hemostasia/efeitos dos fármacos , Humanos , Immunoblotting/métodos , Imunoprecipitação/métodos , Camundongos , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Testes de Função Plaquetária/métodos , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Trombose/sangue , Trombose/metabolismo
19.
Int J Mol Sci ; 17(7)2016 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-27420053

RESUMO

miRNAs are a class of over 5000 noncoding RNAs that regulate more than half of the protein-encoding genes by provoking their degradation or preventing their translation. miRNAs are key regulators of complex biological processes underlying several cardiovascular disorders, including left ventricular hypertrophy, ischemic heart disease, heart failure, hypertension and arrhythmias. Moreover, circulating miRNAs herald promise as biomarkers in acute myocardial infarction and heart failure. In this context, this review gives an overview of studies that suggest that miRNAs could also play a role in valvular heart diseases. This area of research is still at its infancy, and further investigations in large patient cohorts and cellular or animal models are needed to provide strong data. Most studies focused on aortic stenosis, one of the most common valvular diseases in developed countries. Profiling and functional analyses indicate that miRNAs could contribute to activation of aortic valve interstitial cells to a myofibroblast phenotype, leading to valvular fibrosis and calcification, and to pressure overload-induced myocardial remodeling and hypertrophy. Data also indicate that specific miRNA signatures, in combination with clinical and functional imaging parameters, could represent useful biomarkers of disease progression or recovery after aortic valve replacement.


Assuntos
Biomarcadores/análise , Doenças das Valvas Cardíacas/fisiopatologia , MicroRNAs/genética , Remodelação Ventricular/genética , Animais , Humanos
20.
Circ Cardiovasc Imaging ; 8(9): e003697, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26338876

RESUMO

BACKGROUND: Cardiac magnetic resonance (CMR) is increasingly used for the diagnosis and management of cardiac diseases. Recent studies have reported immediate post-CMR DNA double-strand breaks in T lymphocytes. We sought to evaluate CMR-induced DNA damage in lymphocytes, alterations of blood cells, and their temporal persistence. METHODS AND RESULTS: In 20 prospectively enrolled healthy men (31.4±7.9 years), blood was drawn before and after (1-2 hours, 2 days, 1 month, and 1 year) unenhanced 1.5T CMR. Blood cell counts, cell death, and activation status of lymphocytes, monocytes, neutrophils, and platelets were evaluated. The first 2-hour post-CMR were characterized by a small increase of lymphocyte B and neutrophil counts and a transient drop of total lymphocytes because of a decrease in natural killer cells. Among blood cells, only neutrophils and monocytes displayed slight and transient activation. DNA double-strand breaks in lymphocytes were quantified through flow cytometric analysis of H2AX phosphorylation (γ-H2AX). γ-H2AX intensity in T lymphocytes did not change early after CMR but increased significantly at day 2 ≤1 month before returning to baseline levels of 1-year post-CMR. CONCLUSIONS: Unenhanced CMR is associated with minor but significant immediate blood cell alterations or activations figuring inflammatory response, as well as DNA damage in T lymphocytes observed from day 2 until the first month but disappearing at 1-year follow-up. Although further studies are required to definitely state whether CMR can be used safely, our findings already call for caution when it comes to repeat this examination within a month.


Assuntos
Células Sanguíneas/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Imagem Cinética por Ressonância Magnética , Adulto , Feminino , Citometria de Fluxo , Seguimentos , Humanos , Masculino , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...