Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 92020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33289630

RESUMO

Some cortical neurons receive highly selective thalamocortical (TC) input, but others do not. Here, we examine connectivity of single thalamic neurons (lateral geniculate nucleus, LGN) onto putative fast-spike inhibitory interneurons in layer 4 of rabbit visual cortex. We show that three 'rules' regulate this connectivity. These rules concern: (1) the precision of retinotopic alignment, (2) the amplitude of the postsynaptic local field potential elicited near the interneuron by spikes of the LGN neuron, and (3) the interneuron's response latency to strong, synchronous LGN input. We found that virtually all first-order fast-spike interneurons receive input from nearly all LGN axons that synapse nearby, regardless of their visual response properties. This was not the case for neighboring regular-spiking neurons. We conclude that profuse and highly promiscuous TC inputs to layer-4 fast-spike inhibitory interneurons generate response properties that are well-suited to mediate a fast, sensitive, and broadly tuned feed-forward inhibition of visual cortical excitatory neurons.


Assuntos
Potenciais de Ação/fisiologia , Corpos Geniculados/citologia , Interneurônios/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Vias Neurais/fisiologia , Neurônios/fisiologia , Estimulação Luminosa , Coelhos , Transmissão Sináptica/fisiologia
2.
J Neurophysiol ; 114(2): 1172-82, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26108950

RESUMO

Sensory adaptation serves to adjust awake brains to changing environments on different time scales. However, adaptation has been studied traditionally under anesthesia and for short time periods. Here, we demonstrate in awake rabbits a novel type of sensory adaptation that persists for >1 h and acts on visual thalamocortical neurons and their synapses in the input layers of the visual cortex. Following prolonged visual stimulation (10-30 min), cells in the dorsal lateral geniculate nucleus (LGN) show a severe and prolonged reduction in spontaneous firing rate. This effect is bidirectional, and prolonged visually induced response suppression is followed by a prolonged increase in spontaneous activity. The reduction in thalamic spontaneous activity following prolonged visual activation is accompanied by increases in 1) response reliability, 2) signal detectability, and 3) the ratio of visual signal/spontaneous activity. In addition, following such prolonged activation of an LGN neuron, the monosynaptic currents generated by thalamic impulses in layer 4 of the primary visual cortex are enhanced. These results demonstrate that in awake brains, prolonged sensory stimulation can have a profound, long-lasting effect on the information conveyed by thalamocortical inputs to the visual cortex.


Assuntos
Adaptação Fisiológica/fisiologia , Corpos Geniculados/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Potenciais de Ação , Animais , Eletroencefalografia , Feminino , Microeletrodos , Estimulação Luminosa/métodos , Coelhos , Fatores de Tempo
3.
J Neurophysiol ; 112(2): 362-73, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24790175

RESUMO

Directionally selective (DS) neurons are found in the retina and lateral geniculate nucleus (LGN) of rabbits and rodents, and in rabbits, LGN DS cells project to primary visual cortex. Here, we compare visual response properties of LGN DS neurons with those of layer 4 simple cells, most of which show strong direction/orientation selectivity. These populations differed dramatically, suggesting that DS cells may not contribute significantly to the synthesis of simple receptive fields: 1) whereas the first harmonic component (F1)-to-mean firing rate (F0) ratios of LGN DS cells are strongly nonlinear, those of simple cells are strongly linear; 2) whereas LGN DS cells have overlapped ON/OFF subfields, simple cells have either a single ON or OFF subfield or two spatially separate subfields; and 3) whereas the preferred directions of LGN DS cells are closely tied to the four cardinal directions, the directional preferences of simple cells are more evenly distributed. We further show that directional selectivity in LGN DS neurons is strongly enhanced by alertness via two mechanisms, 1) an increase in responses to stimulation in the preferred direction, and 2) an enhanced suppression of responses to stimuli moving in the null direction. Finally, our simulations show that these two consequences of alertness could each serve, in a vector-based population code, to hasten the computation of stimulus direction when rabbits become alert.


Assuntos
Corpos Geniculados/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Vigília , Animais , Feminino , Corpos Geniculados/citologia , Condução Nervosa , Coelhos , Campos Visuais , Percepção Visual
4.
J Neurosci ; 34(11): 3888-900, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24623767

RESUMO

Awake mammals can switch between alert and nonalert brain states hundreds of times per day. Here, we study the effects of alertness on two cell classes in layer 4 of primary visual cortex of awake rabbits: presumptive excitatory "simple" cells and presumptive fast-spike inhibitory neurons (suspected inhibitory interneurons). We show that in both cell classes, alertness increases the strength and greatly enhances the reliability of visual responses. In simple cells, alertness also increases the temporal frequency bandwidth, but preserves contrast sensitivity, orientation tuning, and selectivity for direction and spatial frequency. Finally, alertness selectively suppresses the simple cell responses to high-contrast stimuli and stimuli moving orthogonal to the preferred direction, effectively enhancing mid-contrast borders. Using a population coding model, we show that these effects of alertness in simple cells--enhanced reliability, higher gain, and increased suppression in orthogonal orientation-could play a major role at increasing the speed of cortical feature detection.


Assuntos
Potenciais de Ação/fisiologia , Interneurônios/fisiologia , Inibição Neural/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Vigília/fisiologia , Animais , Sensibilidades de Contraste/fisiologia , Feminino , Modelos Lineares , Modelos Neurológicos , Orientação/fisiologia , Coelhos , Vias Visuais/fisiologia
5.
J Neurosci ; 33(28): 11372-89, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23843510

RESUMO

Extracellular recordings were obtained from two cell classes in layer 4 of the awake rabbit primary visual cortex (V1): putative inhibitory interneurons [suspected inhibitory interneurons (SINs)] and putative excitatory cells with simple receptive fields. SINs were identified solely by their characteristic response to electrical stimulation of the lateral geniculate nucleus (LGN, 3+ spikes at >600 Hz), and simple cells were identified solely by receptive field structure, requiring spatially separate ON and/or OFF subfields. Notably, no cells met both criteria, and we studied 62 simple cells and 33 SINs. Fourteen cells met neither criterion. These layer 4 populations were markedly distinct. Thus, SINs were far less linear (F1/F0 < 1), more broadly tuned to stimulus orientation, direction, spatial and temporal frequency, more sensitive to contrast, had much higher spontaneous and stimulus-driven activity, and always had spatially overlapping ON/OFF receptive subfields. SINs responded to drifting gratings with increased firing rates (F0) for all orientations and directions. However, some SINs showed a weaker modulated (F1) response sharply tuned to orientation and/or direction. SINs responded at shorter latencies than simple cells to stationary stimuli, and the responses of both populations could be sustained or transient. Transient simple cells were more sensitive to contrast than sustained simple cells and their visual responses were more frequently suppressed by high contrasts. Finally, cross-correlation between LGN and SIN spike trains confirmed a fast and precisely timed monosynaptic connectivity, supporting the notion that SINs are well suited to provide a fast feedforward inhibition onto targeted cortical populations.


Assuntos
Interneurônios/fisiologia , Inibição Neural/fisiologia , Estimulação Luminosa/métodos , Córtex Visual/citologia , Córtex Visual/fisiologia , Vigília/fisiologia , Animais , Estimulação Elétrica/métodos , Eletrodos Implantados , Feminino , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...