Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 12(2): e0045222, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36700636

RESUMO

Here, we present a draft genome in the order Rhizobiales and family Devosiaceae. This draft genome comes from an enrichment of a heterocystous, cyanobacterial diazotroph (HetDA) that was originally living in association with Trichodesmium species. This Rhizobiales organism is proposed to be an anoxygenic phototroph capable of dissimilatory nitrate reduction to ammonia (DNRA).

2.
Microbiol Resour Announc ; 12(2): e0059522, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36719246

RESUMO

Here, we present HetDA_MAG_SS10, a metagenome-assembled genome (MAG) from an enrichment of a heterocystous diazotroph originally living in association with Trichodesmium spp. obtained near Station ALOHA in the North Pacific Ocean. HetDA_MAG_SS10, an alphaproteobacterium in the order Micavibrionales, is proposed to be photoheterotrophic via rhodopsin and has the potential for dimethylsulfoniopropionate (DMSP) demethylation.

3.
Microbiol Resour Announc ; 12(2): e0059422, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36688647

RESUMO

Here, we describe the metagenome-assembled genome (MAG) HetDA_MAG_SS2, in the family Cyclobacteriaceae. It was found in association with a HetDA cyanobiont isolated from a Station ALOHA Trichodesmium colony. Annotation suggests that HetDA_MAG_SS2 is a chemoorganoheterotroph with the potential for lithoheterotrophy, containing genes for aerobic respiration, mixed acid fermentation, dissimilatory nitrate reduction to ammonium, and sulfide oxidation.

4.
Microbiol Resour Announc ; 12(1): e0045322, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36507679

RESUMO

Diazotrophic cyanobacteria play a vital role in the nitrogen influx of the global marine ecosystem. In July 2010, colonies of Trichodesmium spp. were picked near Station ALOHA in the oligotrophic North Pacific Subtropical Gyre, and a novel heterocystous diazotroph (strain HetDA_MAG_MS3) belonging to the genus Rivularia was found living in close association; it was cultured and sequenced.

5.
Microbiol Resour Announc ; 12(1): e0045422, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36515503

RESUMO

Here, we describe the metagenome-assembled genome (MAG) HetDA_MAG_MS6. HetDA_MAG_MS6 was obtained from an enrichment of the heterocystous diazotroph HetDA, which was isolated near Station ALOHA. The MAG was placed in the Cyclobacteriaceae family and is predicted to be a chemoorganoheterotroph with the potential for ammonia uptake, phosphonate transport, and sulfolipid biosynthesis.

6.
Microbiol Resour Announc ; 12(1): e0059222, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36515538

RESUMO

We present a metagenome-assembled genome (MAG), HetDA_MAG_MS8, that was determined to be unique via relative evolutionary divergence (RED) scores and average nucleotide identity (ANI) values. HetDA_MAG_MS8 is in the order Nevskiales, genus Oceanococcus, and was assembled from a heterocytous cyanobiont enrichment from the Hawaii Ocean Time Series. HetDA_MAG_MS8 is predicted to be a facultative, aerobic, anoxygenic photolithoheterotroph that has the potential for sulfide oxidation and dimethylsulfoniopropionate (DMSP) synthesis.

7.
Sci Data ; 5: 170203, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29337314

RESUMO

Microorganisms play a crucial role in mediating global biogeochemical cycles in the marine environment. By reconstructing the genomes of environmental organisms through metagenomics, researchers are able to study the metabolic potential of Bacteria and Archaea that are resistant to isolation in the laboratory. Utilizing the large metagenomic dataset generated from 234 samples collected during the Tara Oceans circumnavigation expedition, we were able to assemble 102 billion paired-end reads into 562 million contigs, which in turn were co-assembled and consolidated in to 7.2 million contigs ≥2 kb in length. Approximately 1 million of these contigs were binned to reconstruct draft genomes. In total, 2,631 draft genomes with an estimated completion of ≥50% were generated (1,491 draft genomes >70% complete; 603 genomes >90% complete). A majority of the draft genomes were manually assigned phylogeny based on sets of concatenated phylogenetic marker genes and/or 16S rRNA gene sequences. The draft genomes are now publically available for the research community at-large.


Assuntos
Archaea , Bactérias , Metagenoma , Oceanos e Mares , Metagenômica , Filogenia , RNA Arqueal , RNA Bacteriano , RNA Ribossômico 16S
8.
PeerJ ; 5: e3558, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713657

RESUMO

The Tara Oceans Expedition has provided large, publicly-accessible microbial metagenomic datasets from a circumnavigation of the globe. Utilizing several size fractions from the samples originating in the Mediterranean Sea, we have used current assembly and binning techniques to reconstruct 290 putative draft metagenome-assembled bacterial and archaeal genomes, with an estimated completion of ≥50%, and an additional 2,786 bins, with estimated completion of 0-50%. We have submitted our results, including initial taxonomic and phylogenetic assignments, for the putative draft genomes to open-access repositories for the scientific community to use in ongoing research.

9.
PeerJ ; 5: e3035, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28289564

RESUMO

Metagenomics has become an integral part of defining microbial diversity in various environments. Many ecosystems have characteristically low biomass and few cultured representatives. Linking potential metabolisms to phylogeny in environmental microorganisms is important for interpreting microbial community functions and the impacts these communities have on geochemical cycles. However, with metagenomic studies there is the computational hurdle of 'binning' contigs into phylogenetically related units or putative genomes. Binning methods have been implemented with varying approaches such as k-means clustering, Gaussian mixture models, hierarchical clustering, neural networks, and two-way clustering; however, many of these suffer from biases against low coverage/abundance organisms and closely related taxa/strains. We are introducing a new binning method, BinSanity, that utilizes the clustering algorithm affinity propagation (AP), to cluster assemblies using coverage with compositional based refinement (tetranucleotide frequency and percent GC content) to optimize bins containing multiple source organisms. This separation of composition and coverage based clustering reduces bias for closely related taxa. BinSanity was developed and tested on artificial metagenomes varying in size and complexity. Results indicate that BinSanity has a higher precision, recall, and Adjusted Rand Index compared to five commonly implemented methods. When tested on a previously published environmental metagenome, BinSanity generated high completion and low redundancy bins corresponding with the published metagenome-assembled genomes.

10.
Appl Environ Microbiol ; 82(14): 4232-43, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27208118

RESUMO

UNLABELLED: The South Pacific Gyre (SPG) possesses the lowest rates of sedimentation, surface chlorophyll concentration, and primary productivity in the global oceans. As a direct result, deep-sea sediments are thin and contain small amounts of labile organic carbon. It was recently shown that the entire SPG sediment column is oxygenated and may be representative of up to a third of the global marine environment. To understand the microbial processes that contribute to the removal of the labile organic matter at the water-sediment interface, a sediment sample was collected and subjected to metagenomic sequencing and analyses. Analysis of nine partially reconstructed environmental genomes, which represent approximately one-third of the microbial community, revealed that the members of the SPG surface sediment microbial community are phylogenetically distinct from surface/upper-ocean organisms. These genomes represent a wide distribution of novel organisms, including deep-branching Alphaproteobacteria, two novel organisms within the Proteobacteria, and new members of the Nitrospirae, Nitrospinae, and candidate phylum NC10. These genomes contain evidence for microbially mediated metal (iron/manganese) oxidation and carbon fixation linked to nitrification. Additionally, despite hypothesized energy limitation, members of the SPG microbial community had motility and chemotaxis genes and possessed mechanisms for the degradation of high-molecular-weight organic matter. This study contributes to our understanding of the metabolic potential of microorganisms in deep-sea oligotrophic sediments and their impact on local carbon geochemistry. IMPORTANCE: This research provides insight into the microbial metabolic potential of organisms inhabiting oxygenated deep-sea marine sediments. Current estimates suggest that these environments account for up to a third of the global marine sediment habitat. Nine novel deep-sea microbial genomes were reconstructed from a metagenomic data set and expand the limited number of environmental genomes from deep-sea sediment environments. This research provides phylogeny-linked insight into critical metabolisms, including carbon fixation associated with nitrification, which is assignable to members of the marine group 1 Thaumarchaeota, Nitrospinae, and Nitrospirae and neutrophilic metal (iron/manganese) oxidation assignable to a novel proteobacterium.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Metabolismo Energético , Sedimentos Geológicos/microbiologia , Aerobiose , Bactérias/classificação , Carbono/metabolismo , Metagenômica , Metais/metabolismo , Compostos Orgânicos/metabolismo , Oxirredução , Oceano Pacífico , Análise de Sequência de DNA
11.
Proc Natl Acad Sci U S A ; 112(14): 4251-6, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25831533

RESUMO

Understanding the evolution of the free-living, cyanobacterial, diazotroph Trichodesmium is of great importance because of its critical role in oceanic biogeochemistry and primary production. Unlike the other >150 available genomes of free-living cyanobacteria, only 63.8% of the Trichodesmium erythraeum (strain IMS101) genome is predicted to encode protein, which is 20-25% less than the average for other cyanobacteria and nonpathogenic, free-living bacteria. We use distinctive isolates and metagenomic data to show that low coding density observed in IMS101 is a common feature of the Trichodesmium genus, both in culture and in situ. Transcriptome analysis indicates that 86% of the noncoding space is expressed, although the function of these transcripts is unclear. The density of noncoding, possible regulatory elements predicted in Trichodesmium, when normalized per intergenic kilobase, was comparable and twofold higher than that found in the gene-dense genomes of the sympatric cyanobacterial genera Synechococcus and Prochlorococcus, respectively. Conserved Trichodesmium noncoding RNA secondary structures were predicted between most culture and metagenomic sequences, lending support to the structural conservation. Conservation of these intergenic regions in spatiotemporally separated Trichodesmium populations suggests possible genus-wide selection for their maintenance. These large intergenic spacers may have developed during intervals of strong genetic drift caused by periodic blooms of a subset of genotypes, which may have reduced effective population size. Our data suggest that transposition of selfish DNA, low effective population size, and high-fidelity replication allowed the unusual "inflation" of noncoding sequence observed in Trichodesmium despite its oligotrophic lifestyle.


Assuntos
Cianobactérias/genética , Cianobactérias/fisiologia , DNA Bacteriano/química , Proteínas de Bactérias/química , Carbono/química , Biologia Computacional , DNA Bacteriano/genética , DNA Intergênico/genética , Ecossistema , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Genoma , Genômica , Dados de Sequência Molecular , Nitrogênio/química , Fixação de Nitrogênio/genética , Conformação de Ácido Nucleico , Oceanos e Mares , Prochlorococcus/genética , RNA/química , RNA/genética , Transdução de Sinais , Synechococcus/genética , Transposases/metabolismo
12.
Front Microbiol ; 6: 1409, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26733957

RESUMO

The oceanic crust forms two thirds of the Earth's surface and hosts a large phylogenetic and functional diversity of microorganisms. While advances have been made in the sedimentary realm, our understanding of the igneous rock portion as a microbial habitat has remained limited. We present the first comparative metagenomic microbial community analysis from ocean floor basalt environments at the Lo'ihi Seamount, Hawai'i, and the East Pacific Rise (EPR; 9°N). Phylogenetic analysis indicates the presence of a total of 43 bacterial and archaeal mono-phyletic groups, dominated by Alpha- and Gammaproteobacteria, as well as Thaumarchaeota. Functional gene analysis suggests that these Thaumarchaeota play an important role in ammonium oxidation on seafloor basalts. In addition to ammonium oxidation, the seafloor basalt habitat reveals a wide spectrum of other metabolic potentials, including CO2 fixation, denitrification, dissimilatory sulfate reduction, and sulfur oxidation. Basalt communities from Lo'ihi and the EPR show considerable metabolic and phylogenetic overlap down to the genus level despite geographic distance and slightly different seafloor basalt mineralogy.

13.
Front Microbiol ; 6: 1540, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26834710

RESUMO

Recent studies of bacterial speciation have claimed to support the biological species concept-that reduced recombination is required for bacterial populations to diverge into species. This conclusion has been reached from the discovery that ecologically distinct clades show lower rates of recombination than that which occurs among closest relatives. However, these previous studies did not attempt to determine whether the more-rapidly recombining close relatives within the clades studied may also have diversified ecologically, without benefit of sexual isolation. Here we have measured the impact of recombination on ecological diversification within and between two ecologically distinct clades (A and B') of Synechococcus in a hot spring microbial mat in Yellowstone National Park, using a cultivation-free, multi-locus approach. Bacterial artificial chromosome (BAC) libraries were constructed from mat samples collected at 60°C and 65°C. Analysis of multiple linked loci near Synechococcus 16S rRNA genes showed little evidence of recombination between the A and B' lineages, but a record of recombination was apparent within each lineage. Recombination and mutation rates within each lineage were of similar magnitude, but recombination had a somewhat greater impact on sequence diversity than mutation, as also seen in many other bacteria and archaea. Despite recombination within the A and B' lineages, there was evidence of ecological diversification within each lineage. The algorithm Ecotype Simulation identified sequence clusters consistent with ecologically distinct populations (ecotypes), and several hypothesized ecotypes were distinct in their habitat associations and in their adaptations to different microenvironments. We conclude that sexual isolation is more likely to follow ecological divergence than to precede it. Thus, an ecology-based model of speciation appears more appropriate than the biological species concept for bacterial and archaeal diversification.

14.
Microbiome ; 2: 34, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25258679

RESUMO

BACKGROUND: The Gulf of Maine is an important biological province of the Northwest Atlantic with high productivity year round. From an environmental Sanger-based metagenome, sampled in summer and winter, we were able to assemble and explore the partial environmental genomes of uncultured members of the class Flavobacteria. Each of the environmental genomes represents organisms that compose less than 1% of the total microbial metagenome. RESULTS: Four partial environmental genomes were assembled with varying degrees of estimated completeness (37%-84% complete) and were analyzed from a perspective of gathering information regarding niche partitioning between co-occurring organisms. Comparative genomics revealed potentially important niche partitioning genomic variations, including iron transporters and genes associated with cell attachment and polymer degradation. Analysis of large syntenic regions helped reveal potentially ecologically relevant variations for Flavobacteriaceae in the Gulf of Maine, such as arginine biosynthesis, and identify a putative genomic island incorporating novel exogenous genes from the environment. CONCLUSIONS: Biogeographic analysis revealed flavobacteria species with distinct abundance patterns suggesting the presence of local blooms relative to the other species, as well as seasonally selected organisms. The analysis of genomic content for the Gulf of Maine Flavobacteria supports the hypothesis of a particle-associated lifestyle and specifically highlights a number of putative coding sequences that may play a role in the remineralization of particulate organic matter. And lastly, analysis of the underlying sequences for each assembled genome revealed seasonal and nonseasonal variants of specific genes implicating a dynamic interaction between individuals within the species.

15.
Front Microbiol ; 4: 161, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23805131

RESUMO

The formation and maintenance of deep-sea ferromanganese/polymetallic nodules still remains a mystery 140 years after their discovery. The wealth of rare metals concentrated in these nodules has spurred global interest in exploring the mining potential of these resources. The prevailing theory of abiotic formation has been called into question and the role of microbial metabolisms in nodule development is now an area of active research. To understand the community structure of microbes associated with nodules and their surrounding sediment, we performed targeted sequencing of the V4 hypervariable region of the 16S rRNA gene from three nodules collected from the central South Pacific. Results have shown that the microbial communities of the nodules are significantly distinct from the communities in the surrounding sediments, and that the interiors of the nodules harbor communities different from the exterior. This suggests not only differences in potential metabolisms between the nodule and sediment communities, but also differences in the dominant metabolisms of interior and exterior communities. We identified several operational taxonomic units (OTUs) unique to both the nodule and sediment environments. The identified OTUs were assigned putative taxonomic identifications, including two OTUs only found associated with the nodules, which were assigned to the α-Proteobacteria. Finally, we explored the diversity of the most assigned taxonomic group, the Thaumarchaea MG-1, which revealed novel OTUs compared to previous research from the region and suggests a potential role as a source of fixed carbon for ammonia oxidizing archaea in the environment.

16.
Front Microbiol ; 4: 52, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23518919

RESUMO

Zetaproteobacteria are among the most prevalent Fe(II)-oxidizing bacteria (FeOB) at deep-sea hydrothermal vents; however, knowledge about their environmental significance is limited. We provide metagenomic insights into an iron mat at the Lo´ihi Seamount, Hawai´l, revealing novel genomic information of locally dominant Zetaproteobacteria lineages. These lineages were previously estimated to account for ~13% of all local Zetaproteobacteria based on 16S clone library data. Biogeochemically relevant genes include nitrite reductases, which were previously not identified in Zetaproteobacteria, sulfide:quinone oxidases, and ribulose-1,5-bisphosphate carboxylase (RuBisCo). Genes assumed to be involved in Fe(II) oxidation correlate in synteny and share 87% amino acid similarity with those previously identified in the related Zetaproteobacterium Mariprofundus ferrooxydans PV-1. Overall, Zetaproteobacteria genes appear to originate primarily from within the Proteobacteria and the Fe(II)-oxidizing Leptospirillum spp. and are predicted to facilitate adaptation to a deep-sea hydrothermal vent environment in addition to microaerophilic Fe(II) and H2S oxidation. This dataset represents the first metagenomic study of FeOB from an iron oxide mat at a deep-sea hydrothermal habitat.

17.
J Bacteriol ; 194(14): 3636-42, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22563047

RESUMO

The genomes of the two closely related freshwater thermophilic cyanobacteria Synechococcus sp. strain JA-3-3Ab and Synechococcus sp. strain JA-2-3B'a(2-13) each host several families of insertion sequences (ISSoc families) at various copy numbers, resulting in an overall high abundance of insertion sequences in the genomes. In addition to full-length copies, a large number of internal deletion variants have been identified. ISSoc2 has two variants (ISSoc2∂-1 and ISSoc2∂-2) that are observed to have multiple near-exact copies. Comparison of environmental metagenomic sequences to the Synechococcus genomes reveals novel placement of copies of ISSoc2, ISSoc2∂-1, and ISSoc2∂-2. Thus, ISSoc2∂-1 and ISSoc2∂-2 appear to be active nonautonomous mobile elements derived by internal deletion from ISSoc2. Insertion sites interrupting genes that are likely critical for cell viability were detected; however, most insertions either were intergenic or were within genes of unknown function. Most novel insertions detected in the metagenome were rare, suggesting a stringent selective environment. Evidence for mobility of internal deletion variants of other insertion sequences in these isolates suggests that this is a general mechanism for the formation of miniature insertion sequences.


Assuntos
Elementos de DNA Transponíveis/genética , Synechococcus/metabolismo , Sequência de Bases , DNA Bacteriano , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Dados de Sequência Molecular
18.
Environ Microbiol ; 14(1): 254-67, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22050608

RESUMO

Thaumarchaea, which represent as much as 20% of prokaryotic biomass in the open ocean, have been linked to environmentally relevant biogeochemical processes, such as ammonia oxidation (nitrification) and inorganic carbon fixation. We have used culture-independent methods to study this group because current cultivation limitations have proved a hindrance in studying these organisms. From a metagenomic data set obtained from surface waters from the Gulf of Maine, we have identified 36,111 sequence reads (containing 30 Mbp) likely derived from environmental planktonic Thaumarchaea. Metabolic analysis of the raw sequences and assemblies identified copies of the catalytic subunit required in aerobic ammonia oxidation. In addition, genes that comprise a nearly complete carbon assimilation pathway in the form of the 3-hyroxypropionate/4-hydroxybutyrate cycle were identified. Comparative genomics contrasting the putative environmental thaumarchaeal sequences and 'Candidatus Nitrosopumilus maritimus SCM1' revealed a number of genomic islands absent in the Gulf of Maine population. Analysis of these genomic islands revealed an integrase-associated island also found in distantly related microbial species, variations in the abundance of genes predicted to be important in thaumarchaeal respiratory chain, and the absence of a high-affinity phosphate uptake operon. Analysis of the underlying sequence diversity suggests the presence of at least two dominant environmental populations. Attempts to assemble complete environmental genomes were unsuccessful, but analysis of scaffolds revealed two diverging populations, including a thaumarchaeal-related scaffold with the full urease operon. Ultimately, the analysis revealed a number of insights into the metabolic potential of a predominantly uncultivated lineage of organisms. The predicted functions in the thaumarchaeal metagenomic sequences are directly supported by historic measurements of nutrient concentrations and provide new avenues of research in regards to understanding the role Thaumarchaea play in the environment.


Assuntos
Archaea/genética , Metagenoma , Plâncton/genética , Amônia/metabolismo , Archaea/metabolismo , Carbono/metabolismo , DNA Arqueal/genética , Ilhas Genômicas , Maine , Metagenômica , Oceanos e Mares , Oxirredução , Filogenia , Plâncton/metabolismo , Água do Mar/microbiologia , Análise de Sequência de DNA
19.
PLoS One ; 6(9): e25386, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21966516

RESUMO

Mariprofundus ferrooxydans PV-1 has provided the first genome of the recently discovered Zetaproteobacteria subdivision. Genome analysis reveals a complete TCA cycle, the ability to fix CO(2), carbon-storage proteins and a sugar phosphotransferase system (PTS). The latter could facilitate the transport of carbohydrates across the cell membrane and possibly aid in stalk formation, a matrix composed of exopolymers and/or exopolysaccharides, which is used to store oxidized iron minerals outside the cell. Two-component signal transduction system genes, including histidine kinases, GGDEF domain genes, and response regulators containing CheY-like receivers, are abundant and widely distributed across the genome. Most of these are located in close proximity to genes required for cell division, phosphate uptake and transport, exopolymer and heavy metal secretion, flagellar biosynthesis and pilus assembly suggesting that these functions are highly regulated. Similar to many other motile, microaerophilic bacteria, genes encoding aerotaxis as well as antioxidant functionality (e.g., superoxide dismutases and peroxidases) are predicted to sense and respond to oxygen gradients, as would be required to maintain cellular redox balance in the specialized habitat where M. ferrooxydans resides. Comparative genomics with other Fe(II) oxidizing bacteria residing in freshwater and marine environments revealed similar content, synteny, and amino acid similarity of coding sequences potentially involved in Fe(II) oxidation, signal transduction and response regulation, oxygen sensation and detoxification, and heavy metal resistance. This study has provided novel insights into the molecular nature of Zetaproteobacteria.


Assuntos
Compostos Ferrosos/metabolismo , Genoma Bacteriano/fisiologia , Proteobactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genoma Bacteriano/genética , Oxirredução , Proteobactérias/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
20.
Proc Natl Acad Sci U S A ; 108(31): 12776-81, 2011 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-21768380

RESUMO

The surface layer of the oceans and other aquatic environments contains many bacteria that range in activity, from dormant cells to those with high rates of metabolism. However, little experimental evidence exists about the activity of specific bacterial taxa, especially rare ones. Here we explore the relationship between abundance and activity by documenting changes in abundance over time and by examining the ratio of 16S rRNA to rRNA genes (rDNA) of individual bacterial taxa. The V1-V2 region of 16S rRNA and rDNA was analyzed by tag pyrosequencing in a 3-y study of surface waters off the Delaware coast. Over half of the bacterial taxa actively cycled between abundant and rare, whereas about 12% always remained rare and potentially inactive. There was a significant correlation between the relative abundance of 16S rRNA and the relative abundance of 16S rDNA for most individual taxa. However, 16S rRNA:rDNA ratios were significantly higher in about 20% of the taxa when they were rare than when abundant. Relationships between 16S rRNA and rDNA frequencies were confirmed for five taxa by quantitative PCR. Our findings suggest that though abundance follows activity in the majority of the taxa, a significant portion of the rare community is active, with growth rates that decrease as abundance increases.


Assuntos
Bactérias/genética , DNA Ribossômico/genética , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , Delaware , Ecossistema , Microbiologia Ambiental , Variação Genética , Oceanos e Mares , Filogenia , Reação em Cadeia da Polimerase , Análise de Regressão , Análise de Sequência de DNA , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...