Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Microbiol ; 62(2): e0128523, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38131692

RESUMO

The COVID-19 pandemic spurred the development of innovative solutions for specimen collection and molecular detection for large-scale community testing. Among these developments is the RHINOstic nasal swab, a plastic anterior nares swab built into the cap of a standard matrix tube that facilitates automated processing of up to 96 specimens at a time. In a study of unsupervised self-collection utilizing these swabs, we demonstrate comparable analytic performance and shipping stability compared to traditional anterior nares swabs, as well as significant improvements in laboratory processing efficiency. The use of these swabs may allow laboratories to accommodate large numbers of sample collections during periods of high testing demand. Automation-friendly nasal swabs are an important tool for high-throughput processing of samples that may be adopted in response to future respiratory viral pandemics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Teste para COVID-19 , Técnicas de Laboratório Clínico , Pandemias , Manejo de Espécimes , Nasofaringe
2.
Front Immunol ; 13: 1026233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389772

RESUMO

Fowl adenovirus (FAdV)-induced diseases hepatitis-hydropericardium syndrome (HHS) and inclusion body hepatitis (IBH) have been affecting the poultry industry with increasing severity in the last two decades. Recently, a subunit vaccine based on a chimeric fiber protein with epitopes from different fowl adenovirus serotypes (named crecFib-4/11) has been shown to confer simultaneous protection against both HHS and IBH. However, the underlying immune mechanisms in chickens are still enigmatic, especially because of frequently absent neutralizing response despite high levels of protection. In this study, we investigated the kinetics of the humoral and cellular immune responses in specific pathogen-free chickens after vaccination with crecFib-4/11 and/or challenge with a HHS-causing strain, on a systemic level, as well as locally in target and lymphoid organs. The humoral response was assessed via enzyme-linked immunosorbent assay (ELISA) and virus neutralization test in serum, while the cellular immune response was determined by phenotyping using flow cytometry. Although vaccination induced serum antibodies, as confirmed by ELISA, such antibodies exhibited no pre-challenge neutralizing activity against FAdV-4. Nevertheless, immunized birds experienced a significant B cell increase in the liver upon challenge, remaining high throughout the experiment. Furthermore, vaccination stimulated the proliferation of cytotoxic T lymphocytes, with earlier circulation in the blood compared to the challenge control and subsequent increase in liver and spleen. Overall, these findings imply that protection of chickens from HHS after crecFib-4/11 vaccination relies on a prominent local immune response in the target organs, instead of circulating neutralizing antibodies.


Assuntos
Infecções por Adenoviridae , Aviadenovirus , Hepatite , Derrame Pericárdico , Doenças das Aves Domésticas , Animais , Galinhas , Proteínas Recombinantes de Fusão , Infecções por Adenoviridae/prevenção & controle , Infecções por Adenoviridae/veterinária , Vacinação , Adenoviridae/genética , Imunidade Celular
3.
Transbound Emerg Dis ; 69(5): e2093-e2104, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35363935

RESUMO

In the present study, we report the occurrence of several outbreaks of hepatitis in flocks of young pheasants in France, between 2017 and 2021. The disease was characterized by prostration, apathy and a median cumulative mortality of 12%, with the birds presenting multifocal to coalescing necrotizing hepatitis on necropsy. Severe extensive areas of degeneration and necrosis were observed in the liver, with degenerative hepatocytes presenting large amphophilic to acidophilic intranuclear inclusion bodies. Transmission electron microscopy examination of liver samples showed the presence of parvovirus-like virions of 21-24 nm, a finding already reported decades ago. Further investigations by Next Generation Sequencing and PCR revealed the complete genome of a novel species of parvovirus, here designated Phasianus chaphamaparvovirus 1 (PhChPV-1), that belongs to the new genus Chaphamaparvovirus in the Hamaparvovirinae subfamily. In situ hybridization and real-time PCR confirmed the etiology of the outbreaks, demonstrating the viral genome in the lesions. The findings establish the etiology of a pathology first described in pheasants 50 years ago and pave the way for a targeted protection strategy.


Assuntos
Hepatite , Infecções por Parvoviridae , Parvovirus , Animais , Surtos de Doenças/veterinária , Infecções por Parvoviridae/epidemiologia , Infecções por Parvoviridae/veterinária , Parvovirus/genética , Codorniz
4.
Vaccine ; 40(12): 1837-1845, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35151506

RESUMO

In the past decades, fowl adenovirus (FAdV)-related diseases became an increasing concern for the poultry industry worldwide. Various immunization strategies against FAdVs have been experimentally investigated, with a particular focus on subunit vaccines against hepatitis-hydropericardium syndrome (HHS), caused by FAdV serotype 4, and inclusion body hepatitis (IBH), caused by serotypes 2, 8a, 8b and 11. In this study, we extended our innovative concept of recombinant chimeric fiber proteins to design a novel chimera combining epitopes from two distinct serotypes, FAdV-4 and -11, and we investigated its efficacy to simultaneously protect chickens against HHS and IBH. Specific pathogen-free chickens were vaccinated with the novel recombinant chimeric fiber and subsequently challenged with either a HHS- or IBH-causing strain. Vaccinated/challenged birds exhibited a reduction of clinical signs, limited hepatomegaly and lower levels of AST compared to the respective challenge controls. Furthermore, the vaccine prevented atrophy of HHS-affected lymphoid organs, such as thymus and bursa of Fabricius, and viral load in the target organs was significantly reduced. Clinical protection was associated with high levels of pre-challenge antibodies measured on ELISA plates coated with the vaccination antigen. Interestingly, the development of neutralizing antibodies was limited against FAdV-11 and absent against FAdV-4, indicating that protection granted by such an antigen may be linked to different immunization pathways. In conclusion, we proved that the concept of chimeric fiber vaccines can be extended across viral species boundaries and represents the first single-component FAdV subunit vaccine providing comprehensive protection against different FAdV-associated diseases.


Assuntos
Infecções por Adenoviridae , Aviadenovirus , Adenovirus A das Aves , Hepatite , Doenças das Aves Domésticas , Vacinas Virais , Adenoviridae/genética , Infecções por Adenoviridae/prevenção & controle , Infecções por Adenoviridae/veterinária , Animais , Aviadenovirus/genética , Galinhas , Quimera , Adenovirus A das Aves/genética , Corpos de Inclusão , Vacinação/veterinária , Vacinas Virais/genética
5.
Microbiol Spectr ; 10(1): e0212321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35044206

RESUMO

Vaccines against inclusion body hepatitis in chickens are complicated by the involvement of antigenically diverse fowl adenovirus types. Though immunization with fiber protein confers robust protection, type specificity of fiber antibodies is an obstacle for the desired broad coverage. In this study, we utilized information on multiple linear epitopes predicted in the Fowl Aviadenovirus E (FAdV-E) fiber head (knob) to develop chimeric fibers with an exchange between two serotypes' sequences, each containing proposed epitopes. Two consecutive segments pertaining to amino acid positions 1 to 441 and 442 to 525/523 in the fibers of FAdV-8a and -8b, types of Fowl Aviadenovirus E that cause inclusion body hepatitis, were swapped reciprocally to result in novel chimeras, crecFib-8a/8b and crecFib-8b/8a. crecFib was indistinguishable from monospecific recombinant fibers in its eactivity with different FAdV antisera in Western blotting. However, contrary to the results for monospecific fibers, crecFib induced cross-neutralizing antibodies against both serotypes in chickens. This demonstrates three nonidentical epitopes in the FAdV-E fiber, the conserved epitope detected in Western blotting and at least two epitopes participating in neutralization, being type specific and located opposite residue position 441-442. Furthermore, we supply conformational evidence for a site in the fiber knob with accessibility critical for neutralization. With such an extended neutralization spectrum compared to those of individual fibers, crecFib was anticipated to fulfill and even extend the mechanistic basis of fiber-mediated protection toward bivalent coverage. Accordingly, crecFib, administered as a single-antigen component, protected chickens simultaneously against challenge with FAdV-8a or -8b, demonstrated by up-to-complete resistance to clinical disease, prevention of target organ-related changes, and significant reduction of viral load. IMPORTANCE The control of inclusion body hepatitis, a disease of economic importance for chicken production worldwide, is complicated by an etiology involving multiple divergent fowl adenovirus types. The fiber protein is principally efficacious in inducing neutralizing and protective antibodies in vaccinated chickens; however, it faces limitations due to its intrinsic type specificity for neutralization. In this study, based on an in silico-guided prediction of multiple epitopes in the fowl adenovirus fiber head's loops, we designed chimeric proteins, swapping N- and C-distal fiber portions, each containing putative epitopes, between divergent types FAdV-8a and -8b. In in vitro and in vivo studies, the chimeric fiber displayed extended properties compared to those of individual monotype-specific fibers, allowing the number, distribution, functionality, and conformational bearings of epitopes of the fowl adenovirus fiber to be characterized in more detail. Importantly, the chimeric fiber induced cross-neutralizing antibodies and protective responses in chickens against infections by both serotypes, promoting the advancement of broadly protective subunit vaccination strategies against FAdV.


Assuntos
Infecções por Adenoviridae/veterinária , Aviadenovirus/imunologia , Proteínas do Capsídeo/administração & dosagem , Proteínas do Capsídeo/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Infecções por Adenoviridae/imunologia , Infecções por Adenoviridae/prevenção & controle , Infecções por Adenoviridae/virologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Aviadenovirus/genética , Proteínas do Capsídeo/genética , Galinhas , Proteção Cruzada , Epitopos/genética , Epitopos/imunologia , Doenças das Aves Domésticas/sangue , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vacinação , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Virais/genética
6.
Open Forum Infect Dis ; 8(11): ofab464, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34805425

RESUMO

BACKGROUND: We aimed to evaluate a testing program to facilitate control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission at a large university and measure spread in the university community using viral genome sequencing. METHODS: Our prospective longitudinal study used remote contactless enrollment, daily mobile symptom and exposure tracking, and self-swab sample collection. Individuals were tested if the participant was exposed to a known SARS-CoV-2-infected person, developed new symptoms, or reported high-risk behavior (such as attending an indoor gathering without masking or social distancing), if a member of a group experiencing an outbreak, or at enrollment. Study participants included students, staff, and faculty at an urban public university during the Autumn quarter of 2020. RESULTS: We enrolled 16 476 individuals, performed 29 783 SARS-CoV-2 tests, and detected 236 infections. Seventy-five percent of positive cases reported at least 1 of the following: symptoms (60.8%), exposure (34.7%), or high-risk behaviors (21.5%). Greek community affiliation was the strongest risk factor for testing positive, and molecular epidemiology results suggest that specific large gatherings were responsible for several outbreaks. CONCLUSIONS: A testing program focused on individuals with symptoms and unvaccinated persons who participate in large campus gatherings may be effective as part of a comprehensive university-wide mitigation strategy to control the spread of SARS-CoV-2.

7.
Clin Chem ; 68(1): 143-152, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34286830

RESUMO

BACKGROUND: The urgent need for massively scaled clinical testing for SARS-CoV-2, along with global shortages of critical reagents and supplies, has necessitated development of streamlined laboratory testing protocols. Conventional nucleic acid testing for SARS-CoV-2 involves collection of a clinical specimen with a nasopharyngeal swab in transport medium, nucleic acid extraction, and quantitative reverse-transcription PCR (RT-qPCR). As testing has scaled across the world, the global supply chain has buckled, rendering testing reagents and materials scarce. To address shortages, we developed SwabExpress, an end-to-end protocol developed to employ mass produced anterior nares swabs and bypass the requirement for transport media and nucleic acid extraction. METHODS: We evaluated anterior nares swabs, transported dry and eluted in low-TE buffer as a direct-to-RT-qPCR alternative to extraction-dependent viral transport media. We validated our protocol of using heat treatment for viral inactivation and added a proteinase K digestion step to reduce amplification interference. We tested this protocol across archived and prospectively collected swab specimens to fine-tune test performance. RESULTS: After optimization, SwabExpress has a low limit of detection at 2-4 molecules/µL, 100% sensitivity, and 99.4% specificity when compared side by side with a traditional RT-qPCR protocol employing extraction. On real-world specimens, SwabExpress outperforms an automated extraction system while simultaneously reducing cost and hands-on time. CONCLUSION: SwabExpress is a simplified workflow that facilitates scaled testing for COVID-19 without sacrificing test performance. It may serve as a template for the simplification of PCR-based clinical laboratory tests, particularly in times of critical shortages during pandemics.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19 , COVID-19/diagnóstico , Técnicas de Laboratório Clínico , Humanos , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade , Manejo de Espécimes
8.
bioRxiv ; 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32511368

RESUMO

BACKGROUND: The urgent need for massively scaled clinical testing for SARS-CoV-2, along with global shortages of critical reagents and supplies, has necessitated development of streamlined laboratory testing protocols. Conventional nucleic acid testing for SARS-CoV-2 involves collection of a clinical specimen with a nasopharyngeal swab in transport medium, nucleic acid extraction, and quantitative reverse transcription PCR (RT-qPCR) (1). As testing has scaled across the world, the global supply chain has buckled, rendering testing reagents and materials scarce (2). To address shortages, we developed SwabExpress, an end-to-end protocol developed to employ mass produced anterior nares swabs and bypass the requirement for transport media and nucleic acid extraction. METHODS: We evaluated anterior nares swabs, transported dry and eluted in low-TE buffer as a direct-to-RT-qPCR alternative to extraction-dependent viral transport media. We validated our protocol of using heat treatment for viral activation and added a proteinase K digestion step to reduce amplification interference. We tested this protocol across archived and prospectively collected swab specimens to fine-tune test performance. RESULTS: After optimization, SwabExpress has a low limit of detection at 2-4 molecules/uL, 100% sensitivity, and 99.4% specificity when compared side-by-side with a traditional RT-qPCR protocol employing extraction. On real-world specimens, SwabExpress outperforms an automated extraction system while simultaneously reducing cost and hands-on time. CONCLUSION: SwabExpress is a simplified workflow that facilitates scaled testing for COVID-19 without sacrificing test performance. It may serve as a template for the simplification of PCR-based clinical laboratory tests, particularly in times of critical shortages during pandemics.

9.
Vet Res ; 51(1): 143, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33267862

RESUMO

A recombinant fowl adenovirus (FAdV) fiber protein, derived from a FAdV-8a strain, was tested for its efficacy to protect chickens against inclusion body hepatitis (IBH). FAdV-E field isolates belonging to both a homotypic (FAdV-8a) and heterotypic (-8b) serotype were used as challenge. Mechanisms underlying fiber-induced protective immunity were investigated by fiber-based ELISA, virus neutralization assays and flow cytometry of peripheral blood mononuclear cells, monitoring the temporal developments of humoral and cellular responses after vaccination and challenge exposure. Birds were clinically protected from the homologous challenge and showed a significant reduction of viral load in investigated target organs, whereas fiber-based immunity failed to counteract the heterologous serotype infection. These findings were supported in vitro by the strictly type-specific neutralizing activity of fiber immune sera. In protected birds, fiber vaccination prevented a post-challenge drop of peripheral B cells in blood. Furthermore, fiber immunization stimulated CD4+ T lymphocyte proliferation while moderating the CD8α+ T cell response and prevented challenge-induced changes in systemic monocytes/macrophages and γδ+ T cell subpopulations. Both vaccinated and adjuvant-only injected birds experienced a priming of systemic B cells and TCRγδ+ T lymphocytes, which masked possible pre-challenge effects due to the antigen. In conclusion, within FAdV-E, recombinant fiber represents a vaccine candidate to control the adverse effects of homotypic infection by eliciting an effective humoral immunity and regulating B and T cell response, whereas the failure of heterotypic protection suggests a primordial role of humoral immunity for this vaccine.


Assuntos
Galinhas , Adenovirus A das Aves/metabolismo , Hepatite Viral Animal/prevenção & controle , Imunidade Celular/imunologia , Vacinas contra Hepatite Viral/imunologia , Proteínas Virais/imunologia , Animais , Linfócitos B/classificação , Linfócitos B/metabolismo , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Organismos Livres de Patógenos Específicos , Linfócitos T/classificação , Linfócitos T/metabolismo
10.
Evolution ; 74(8): 1724-1740, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32246837

RESUMO

Coordination between nuclear and mitochondrial genomes is critical to metabolic processes underlying animals' ability to adapt to local environments, yet consequences of mitonuclear interactions have rarely been investigated in populations where individuals with divergent mitochondrial and nuclear genomes naturally interbreed. Genetic variation in the leaf beetle Chrysomela aeneicollis was assessed along a latitudinal thermal gradient in California's Sierra Nevada. Variation at mitochondrial cytochrome oxidase II (COII) and the nuclear gene phosphoglucose isomerase (PGI) shows concordance and was significantly greater along a 65 km transect than 10 other loci. STRUCTURE analyses using neutral loci identified a southern and northern subpopulation, which interbreed in the central drainage Bishop Creek. COII and PGI were used as indicators of mitochondrial and nuclear genetic variation in field and laboratory experiments conducted on beetles from this admixed population. Fecundity, larval development rate, running speed and male mating frequency were higher for beetles with geographically "matched" than "mismatched" mitonuclear genotypes. Effects of mitonuclear mismatch were largest for individuals with northern nuclear genotypes possessing southern mitochondria and were most pronounced after heat treatment or at high elevation. These findings suggest that mitonuclear incompatibility diminishes performance and reproductive success in nature, effects that could intensify at environmental extremes.


Assuntos
Besouros/genética , Aptidão Genética , Introgressão Genética , Variação Genética , Genoma Mitocondrial , Animais , California , Besouros/crescimento & desenvolvimento , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Fertilidade , Glucose-6-Fosfato Isomerase/genética , Resposta ao Choque Térmico , Larva/crescimento & desenvolvimento , Locomoção , Masculino , Filogeografia , Comportamento Sexual Animal
11.
Evolution ; 68(8): 2371-85, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24749775

RESUMO

The leaf beetle Chrysomela aeneicollis occurs across Western North America, either at high elevation or in small, isolated populations along the coast, and thus has a highly fragmented distribution. DNA sequence data (three loci) were collected from five regions across the species range. Population connectivity was examined using traditional ecological niche modeling, which suggested that gene flow could occur among regions now and in the past. We developed geographically explicit coalescence models of sequence evolution that incorporated a two-dimensional representation of the hypothesized ranges suggested by the niche-modeling estimates. We simulated sequence data according to these models and compared them to observed sequences to identify most probable scenarios regarding the migration history of C. aeneicollis. Our results disagreed with initial niche-modeling estimates by clearly rejecting recent connectivity among regions, and were instead most consistent with a long period of range fragmentation, extending well beyond the last glacial maximum. This application of geographically explicit models of coalescence has highlighted some limitations of the use of climatic variables for predicting the present and past range of a species and has explained aspects of the Pleistocene evolutionary history of a cold-adapted organism in Western North America.


Assuntos
Besouros/genética , Ecossistema , Evolução Molecular , Fluxo Gênico , Animais , Variação Genética , Genética Populacional , Modelos Genéticos , Modelos Estatísticos , Filogeografia , Análise de Sequência de DNA , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...