Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Math Biosci Eng ; 20(12): 21246-21266, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38124596

RESUMO

In this study, we focus on modeling the local spread of COVID-19 infections. As the pandemic continues and new variants or future pandemics can emerge, modelling the early stages of infection spread becomes crucial, especially as limited medical data might be available initially. Therefore, our aim is to gain a better understanding of the diffusion dynamics on smaller scales using partial differential equation (PDE) models. Previous works have already presented various methods to model the spatial spread of diseases, but, due to a lack of data on regional or even local scale, few actually applied their models on real disease courses in order to describe the behaviour of the disease or estimate parameters. We use medical data from both the Robert-Koch-Institute (RKI) and the Birkenfeld district government for parameter estimation within a single German district, Birkenfeld in Rhineland-Palatinate, during the second wave of the pandemic in autumn 2020 and winter 2020-21. This district can be seen as a typical middle-European region, characterized by its (mainly) rural nature and daily commuter movements towards metropolitan areas. A basic reaction-diffusion model used for spatial COVID spread, which includes compartments for susceptibles, exposed, infected, recovered, and the total population, is used to describe the spatio-temporal spread of infections. The transmission rate, recovery rate, initial infected values, detection rate, and diffusivity rate are considered as parameters to be estimated using the reported daily data and least square fit. This work also features an emphasis on numerical methods which will be used to describe the diffusion on arbitrary two-dimensional domains. Two numerical optimization techniques for parameter fitting are used: the Metropolis algorithm and the adjoint method. Two different methods, the Crank-Nicholson method and a finite element method, which are used according to the requirements of the respective optimization method are used to solve the PDE system. This way, the two methods are compared and validated and provide similar results with good approximation of the infected in both the district and the respective sub-districts.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias , Algoritmos
2.
J Math Ind ; 11(1): 1, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33425640

RESUMO

This paper stresses its base contribution on a new SIR-type model including direct and fomite transmission as well as the effect of distinct household structures. The model derivation is modulated by several mechanistic processes inherent from typical airborne diseases. The notion of minimum contact radius is included in the direct transmission, facilitating the arguments on physical distancing. As fomite transmission heavily relates to former-trace of sneezes, the vector field of the system naturally contains an integral kernel with time delay indicating the contribution of undetected and non-quarantined asymptomatic cases in accumulating the historical contamination of surfaces. We then increase the complexity by including the different transmission routines within and between households. For airborne diseases, within-household interactions play a significant role in the propagation of the disease rendering countrywide effect. Two steps were taken to include the effect of household structure. The first step subdivides the entire compartments (susceptible, exposed, asymptomatic, symptomatic, recovered, death) into the household level and different infection rates for the direct transmission within and between households were distinguished. Under predefined conditions and assumptions, the governing system on household level can be raised to the community level. The second step then raises the governing system to the country level, where the final state variables estimate the total individuals from all compartments in the country. Two key attributes related to the household structure (number of local households and number of household members) effectively classify countries to be of low or high risk in terms of effective disease propagation. The basic reproductive number is calculated and its biological meaning is invoked properly. The numerical methods for solving the DIDE-system and the parameter estimation problem were mentioned. Our optimal model solutions are in quite good agreement with datasets of COVID-19 active cases and related deaths from Germany and Sri Lanka in early infection, allowing us to hypothesize several unobservable situations in the two countries. Focusing on extending minimum contact radius and reducing the intensity of individual activities, we were able to synthesize the key parameters telling what to practice.

3.
J Math Ind ; 10(1): 20, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32834919

RESUMO

Since the end of 2019 an outbreak of a new strain of coronavirus, called SARS-CoV-2, is reported from China and later other parts of the world. Since January 21, World Health Organization (WHO) reports daily data on confirmed cases and deaths from both China and other countries (www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports). The Johns Hopkins University (github.com/CSSEGISandData/COVID-19/blob/master/csse_COVID_19_data/csse_COVID_19_time_series/time_series_COVID19_confirmed_global.csv) collects those data from various sources worldwide on a daily basis. For Germany, the Robert-Koch-Institute (RKI) also issues daily reports on the current number of infections and infection related fatal cases (www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Gesamt.html). However, due to delays in the data collection, the data from RKI always lags behind those reported by Johns Hopkins. In this work we present an extended SEIRD-model to describe the disease dynamics in Germany. The parameter values are identified by matching the model output to the officially reported cases. An additional parameter to capture the influence of unidentified cases is also included in the model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA