Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 156(23): 234109, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35732530

RESUMO

We benchmark a set of quantum-chemistry methods, including multitrajectory Ehrenfest, fewest-switches surface-hopping, and multiconfigurational-Ehrenfest dynamics, against exact quantum-many-body techniques by studying real-time dynamics in the Holstein model. This is a paradigmatic model in condensed matter theory incorporating a local coupling of electrons to Einstein phonons. For the two-site and three-site Holstein model, we discuss the exact and quantum-chemistry methods in terms of the Born-Huang formalism, covering different initial states, which either start on a single Born-Oppenheimer surface, or with the electron localized to a single site. For extended systems with up to 51 sites, we address both the physics of single Holstein polarons and the dynamics of charge-density waves at finite electron densities. For these extended systems, we compare the quantum-chemistry methods to exact dynamics obtained from time-dependent density matrix renormalization group calculations with local basis optimization (DMRG-LBO). We observe that the multitrajectory Ehrenfest method, in general, only captures the ultrashort time dynamics accurately. In contrast, the surface-hopping method with suitable corrections provides a much better description of the long-time behavior but struggles with the short-time description of coherences between different Born-Oppenheimer states. We show that the multiconfigurational Ehrenfest method yields a significant improvement over the multitrajectory Ehrenfest method and can be converged to the exact results in small systems with moderate computational efforts. We further observe that for extended systems, this convergence is slower with respect to the number of configurations. Our benchmark study demonstrates that DMRG-LBO is a useful tool for assessing the quality of the quantum-chemistry methods.

2.
Phys Rev Lett ; 121(13): 130402, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30312049

RESUMO

We experimentally and numerically investigate the sudden expansion of fermions in a homogeneous one-dimensional optical lattice. For initial states with an appreciable amount of doublons, we observe a dynamical phase separation between rapidly expanding singlons and slow doublons remaining in the trap center, realizing the key aspect of fermionic quantum distillation in the strongly interacting limit. For initial states without doublons, we find a reduced interaction dependence of the asymptotic expansion speed compared to bosons, which is explained by the interaction energy produced in the quench.

3.
Phys Rev Lett ; 117(11): 116401, 2016 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-27661705

RESUMO

We study the thermal conductivity of the one-dimensional Fermi-Hubbard model at a finite temperature using a density matrix renormalization group approach. The integrability of this model gives rise to ballistic thermal transport. We calculate the temperature dependence of the thermal Drude weight at half filling for various interaction strengths. The finite-frequency contributions originating from the fact that the energy current is not a conserved quantity are investigated as well. We report evidence that breaking the integrability through a nearest-neighbor interaction leads to vanishing Drude weights and diffusive energy transport. Moreover, we demonstrate that energy spreads ballistically in local quenches with initially inhomogeneous energy density profiles in the integrable case. We discuss the relevance of our results for thermalization in ultracold quantum-gas experiments and for transport measurements with quasi-one-dimensional materials.

4.
Phys Rev Lett ; 115(19): 190402, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26588363

RESUMO

The interplay between spontaneous symmetry breaking in many-body systems, the wavelike nature of quantum particles and lattice effects produces an extraordinary behavior of the chiral current of bosonic particles in the presence of a uniform magnetic flux defined on a two-leg ladder. While noninteracting as well as strongly interacting particles, stirred by the magnetic field, circulate along the system's boundary in the counterclockwise direction in the ground state, interactions stabilize vortex lattices. These states break translational symmetry, which can lead to a reversal of the circulation direction. Our predictions could readily be accessed in quantum gas experiments with existing setups or in arrays of Josephson junctions.

5.
Phys Rev Lett ; 115(17): 175301, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26551122

RESUMO

Long-range order in quantum many-body systems is usually associated with equilibrium situations. Here, we experimentally investigate the quasicondensation of strongly interacting bosons at finite momenta in a far-from-equilibrium case. We prepare an inhomogeneous initial state consisting of one-dimensional Mott insulators in the center of otherwise empty one-dimensional chains in an optical lattice with a lattice constant d. After suddenly quenching the trapping potential to zero, we observe the onset of coherence in spontaneously forming quasicondensates in the lattice. Remarkably, the emerging phase order differs from the ground-state order and is characterized by peaks at finite momenta ±(π/2)(ℏ/d) in the momentum distribution function.

6.
Phys Rev Lett ; 111(24): 246807, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24483691

RESUMO

For a double quantum dot system in a parallel geometry, we demonstrate that by combining the effects of a flux and driving an electrical current through the structure, the spin correlations between electrons localized in the dots can be controlled at will. In particular, a current can induce spin correlations even if the spins are uncorrelated in the initial equilibrium state. Therefore, we are able to engineer an entangled state in this double-dot structure. We take many-body correlations fully into account by simulating the real-time dynamics using the time-dependent density matrix renormalization group method. Using a canonical transformation, we provide an intuitive explanation for our results, related to Ruderman-Kittel-Kasuya-Yoshida physics driven by the bias.

7.
Phys Rev Lett ; 110(20): 205301, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-25167423

RESUMO

We experimentally and numerically investigate the expansion of initially localized ultracold bosons in homogeneous one- and two-dimensional optical lattices. We find that both dimensionality and interaction strength crucially influence these nonequilibrium dynamics. While the atoms expand ballistically in all integrable limits, deviations from these limits dramatically suppress the expansion and lead to the appearance of almost bimodal cloud shapes, indicating diffusive dynamics in the center surrounded by ballistic wings. For strongly interacting bosons, we observe a dimensional crossover of the dynamics from ballistic in the one-dimensional hard-core case to diffusive in two dimensions, as well as a similar crossover when higher occupancies are introduced into the system.

8.
Phys Rev Lett ; 109(11): 110602, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-23005608

RESUMO

We study the sudden expansion of spin-imbalanced ultracold lattice fermions with attractive interactions in one dimension after turning off the longitudinal confining potential. We show that the momentum distribution functions of majority and minority fermions quickly approach stationary values due to a quantum distillation mechanism that results in a spatial separation of pairs and majority fermions. As a consequence, Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) correlations are lost during the expansion. Furthermore, we argue that the shape of the stationary momentum distribution functions can be understood by relating them to the integrals of motion in this integrable quantum system. We discuss our results in the context of proposals to observe FFLO correlations, related to recent experiments by Liao et al., Nature (London) 467, 567 (2010).

9.
Phys Rev Lett ; 102(7): 076403, 2009 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-19257697

RESUMO

We study the pair correlations of a spin-imbalanced two-leg ladder with attractive interactions, using the density matrix renormalization group method. We identify regions in the phase diagram spanned by the chemical potential and the magnetic field that can harbor Fulde-Ferrell-Larkin-Ovchinnikov- (FFLO-)like physics. Results for the pair structure factor, exhibiting multiple pairing wave vectors, substantiate the presence of FFLO-like correlations. We further discuss phase separation scenarios induced by a harmonic trap, which differ from the case of isolated chains.

10.
Phys Rev Lett ; 98(2): 027201, 2007 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-17358641

RESUMO

We present experimental results for the thermal conductivity kappa of the pseudo-two-leg ladder material CaCu2O3. The strong buckling of the ladder rungs renders this material a good approximation to a S=1/2 Heisenberg chain. Despite a strong suppression of the thermal conductivity of this material in all crystal directions due to inherent disorder, we find a dominant magnetic contribution kappa mag along the chain direction. kappa mag is linear in temperature, resembling the low-temperature limit of the thermal Drude weight D th of the S=1/2 Heisenberg chain. The comparison of kappamag and Dth yields a magnetic mean-free path of l mag approximately 22+/-5 A, in good agreement with magnetic measurements.

11.
12.
Phys Rev Lett ; 90(19): 197002, 2003 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-12785973

RESUMO

We present results of the thermal conductivity of La2CuO4 and La(1.8)Eu(0.2)CuO4 single crystals which represent model systems for the two-dimensional spin-1/2 Heisenberg antiferromagnet on a square lattice. We find large anisotropies of the thermal conductivity which are explained in terms of two-dimensional heat conduction by magnons within the CuO2 planes. Nonmagnetic Zn substituted for Cu gradually suppresses this magnon thermal conductivity kappa(mag). A semiclassical analysis of kappa(mag) is shown to yield a magnon mean free path which scales linearly with the reciprocal concentration of Zn ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...