Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
ACS Med Chem Lett ; 13(10): 1591-1597, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36262388

RESUMO

Fragment-based ligand discovery was successfully applied to histone deacetylase HDAC2. In addition to the anticipated hydroxamic acid- and benzamide-based fragment screening hits, a low affinity (∼1 mM) α-amino-amide zinc binding fragment was identified, as well as fragments binding to other regions of the catalytic site. This alternative zinc-binding fragment was further optimized, guided by the structural information from protein-ligand complex X-ray structures, into a sub-µM, brain penetrant, HDAC2 inhibitor (17) capable of modulating histone acetylation levels in vivo.

2.
J Med Chem ; 64(21): 15949-15972, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34705450

RESUMO

The NRF2-mediated cytoprotective response is central to cellular homoeostasis, and there is increasing interest in developing small-molecule activators of this pathway as therapeutics for diseases involving chronic oxidative stress. The protein KEAP1, which regulates NRF2, is a key point for pharmacological intervention, and we recently described the use of fragment-based drug discovery to develop a tool compound that directly disrupts the protein-protein interaction between NRF2 and KEAP1. We now present the identification of a second, chemically distinct series of KEAP1 inhibitors, which provided an alternative chemotype for lead optimization. Pharmacophoric information from our original fragment screen was used to identify new hit matter through database searching and to evolve this into a new lead with high target affinity and cell-based activity. We highlight how knowledge obtained from fragment-based approaches can be used to focus additional screening campaigns in order to de-risk projects through the rapid identification of novel chemical series.


Assuntos
Ácidos Carboxílicos/farmacologia , Descoberta de Drogas , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Animais , Ácidos Carboxílicos/química , Linhagem Celular , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/metabolismo , Ligação Proteica , Pirazóis , Relação Estrutura-Atividade
3.
J Med Chem ; 64(19): 14498-14512, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34570508

RESUMO

Poly-ADP-ribose-polymerase (PARP) inhibitors have achieved regulatory approval in oncology for homologous recombination repair deficient tumors including BRCA mutation. However, some have failed in combination with first-line chemotherapies, usually due to overlapping hematological toxicities. Currently approved PARP inhibitors lack selectivity for PARP1 over PARP2 and some other 16 PARP family members, and we hypothesized that this could contribute to toxicity. Recent literature has demonstrated that PARP1 inhibition and PARP1-DNA trapping are key for driving efficacy in a BRCA mutant background. Herein, we describe the structure- and property-based design of 25 (AZD5305), a potent and selective PARP1 inhibitor and PARP1-DNA trapper with excellent in vivo efficacy in a BRCA mutant HBCx-17 PDX model. Compound 25 is highly selective for PARP1 over other PARP family members, with good secondary pharmacology and physicochemical properties and excellent pharmacokinetics in preclinical species, with reduced effects on human bone marrow progenitor cells in vitro.


Assuntos
DNA , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases , Humanos , Cristalografia por Raios X , DNA/química , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Especificidade por Substrato
4.
J Med Chem ; 64(16): 12286-12303, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34387469

RESUMO

Aberrant activation of the mitogen-activated protein kinase pathway frequently drives tumor growth, and the ERK1/2 kinases are positioned at a key node in this pathway, making them important targets for therapeutic intervention. Recently, a number of ERK1/2 inhibitors have been advanced to investigational clinical trials in patients with activating mutations in B-Raf proto-oncogene or Ras. Here, we describe the discovery of the clinical candidate ASTX029 (15) through structure-guided optimization of our previously published isoindolinone lead (7). The medicinal chemistry campaign focused on addressing CYP3A4-mediated metabolism and maintaining favorable physicochemical properties. These efforts led to the identification of ASTX029, which showed the desired pharmacological profile combining ERK1/2 inhibition with suppression of phospho-ERK1/2 (pERK) levels, and in addition, it possesses suitable preclinical pharmacokinetic properties predictive of once daily dosing in humans. ASTX029 is currently in a phase I-II clinical trial in patients with advanced solid tumors.


Assuntos
Antineoplásicos/uso terapêutico , Indóis/uso terapêutico , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Cristalografia por Raios X , Cães , Humanos , Indóis/síntese química , Indóis/metabolismo , Indóis/farmacocinética , Masculino , Camundongos Endogâmicos BALB C , Proteína Quinase 1 Ativada por Mitógeno/química , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Estrutura Molecular , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Proto-Oncogene Mas , Pirimidinas/síntese química , Pirimidinas/metabolismo , Pirimidinas/farmacocinética , Ratos Sprague-Dawley , Ratos Wistar , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Mol Cancer Ther ; 20(10): 1757-1768, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34330842

RESUMO

The MAPK signaling pathway is commonly upregulated in human cancers. As the primary downstream effector of the MAPK pathway, ERK is an attractive therapeutic target for the treatment of MAPK-activated cancers and for overcoming resistance to upstream inhibition. ASTX029 is a highly potent and selective dual-mechanism ERK inhibitor, discovered using fragment-based drug design. Because of its distinctive ERK-binding mode, ASTX029 inhibits both ERK catalytic activity and the phosphorylation of ERK itself by MEK, despite not directly inhibiting MEK activity. This dual mechanism was demonstrated in cell-free systems, as well as cell lines and xenograft tumor tissue, where the phosphorylation of both ERK and its substrate, ribosomal S6 kinase (RSK), were modulated on treatment with ASTX029. Markers of sensitivity were highlighted in a large cell panel, where ASTX029 preferentially inhibited the proliferation of MAPK-activated cell lines, including those with BRAF or RAS mutations. In vivo, significant antitumor activity was observed in MAPK-activated tumor xenograft models following oral treatment. ASTX029 also demonstrated activity in both in vitro and in vivo models of acquired resistance to MAPK pathway inhibitors. Overall, these findings highlight the therapeutic potential of a dual-mechanism ERK inhibitor such as ASTX029 for the treatment of MAPK-activated cancers, including those which have acquired resistance to inhibitors of upstream components of the MAPK pathway. ASTX029 is currently being evaluated in a first in human phase I-II clinical trial in patients with advanced solid tumors (NCT03520075).


Assuntos
Neoplasias do Colo/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Indóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Animais , Apoptose , Ciclo Celular , Movimento Celular , Proliferação de Células , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosforilação , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
RSC Med Chem ; 12(3): 321-329, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34041484

RESUMO

This Review describes the increasing demand for organic synthesis to facilitate fragment-based drug discovery (FBDD), focusing on polar, unprotected fragments. In FBDD, X-ray crystal structures are used to design target molecules for synthesis with new groups added onto a fragment via specific growth vectors. This requires challenging synthesis which slows down drug discovery, and some fragments are not progressed into optimisation due to synthetic intractability. We have evaluated the output from Astex's fragment screenings for a number of programs, including urokinase-type plasminogen activator, hematopoietic prostaglandin D2 synthase, and hepatitis C virus NS3 protease-helicase, and identified fragments that were not elaborated due, in part, to a lack of commercially available analogues and/or suitable synthetic methodology. This represents an opportunity for the development of new synthetic research to enable rapid access to novel chemical space and fragment optimisation.

7.
J Med Chem ; 62(9): 4683-4702, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-30973731

RESUMO

The KEAP1-NRF2-mediated cytoprotective response plays a key role in cellular homoeostasis. Insufficient NRF2 signaling during chronic oxidative stress may be associated with the pathophysiology of several diseases with an inflammatory component, and pathway activation through direct modulation of the KEAP1-NRF2 protein-protein interaction is being increasingly explored as a potential therapeutic strategy. Nevertheless, the physicochemical nature of the KEAP1-NRF2 interface suggests that achieving high affinity for a cell-penetrant druglike inhibitor might be challenging. We recently reported the discovery of a highly potent tool compound which was used to probe the biology associated with directly disrupting the interaction of NRF2 with the KEAP1 Kelch domain. We now present a detailed account of the medicinal chemistry campaign leading to this molecule, which included exploration and optimization of protein-ligand interactions in three energetic "hot spots" identified by fragment screening. In particular, we also discuss how consideration of ligand conformational stabilization was important to its development and present evidence for preorganization of the lead compound which may contribute to its high affinity and cellular activity.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Propionatos/metabolismo , Ligação Proteica/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/química , Conformação Molecular , Fator 2 Relacionado a NF-E2/química , Propionatos/síntese química , Propionatos/química , Estereoisomerismo , Relação Estrutura-Atividade
8.
Chem Sci ; 10(8): 2264-2271, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30881651

RESUMO

In fragment-based drug discovery (FBDD), a weakly binding fragment hit is elaborated into a potent ligand by bespoke functionalization along specific directions (growth vectors) from the fragment core in order to complement the 3D structure of the target protein. This structure-based design approach can present significant synthetic challenges, as growth vectors often originate on sp2 or sp3 ring carbons which are not the most synthetically accessible points on the fragment. To address this issue and expedite synthesis in FBDD, we established a nanogram-to-gram workflow for the development of enabling synthetic transformations, such as the direct C-H functionalization of heterocycles. This novel approach deploys high-throughput experimentation (HTE) in 1536-well microtiter plates (MTPs) facilitated by liquid handling robots to screen reaction conditions on the nanomolar scale; subsequently the reaction is upscaled in a continuous flow to generate gram-quantities of the material. In this paper, we disclose the use of this powerful workflow for the development of a photoredox-mediated cross-dehydrogenative coupling of fragments and medicinally relevant heterocyclic precursors via Minisci-type addition of α-amino radicals to electron-deficient heteroarenes. The optimized reaction conditions were employed on the milligram-scale on a diverse set of 112 substrates to map out structure-reactivity relationships (SRRs) of the transformation. The coupling exhibits excellent tolerance to a variety of functional groups and N-rich heteroarenes relevant to FBDD and was upscaled in a continuous flow to afford gram-quantities of pharmaceutically relevant sp2-sp3 privileged architectures.

9.
Chem Sci ; 9(45): 8608-8618, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30568786

RESUMO

Target engagement is a key concept in drug discovery and its direct measurement can provide a quantitative understanding of drug efficacy and/or toxicity. Failure to demonstrate target occupancy in relevant cells and tissues has been recognised as a contributing factor to the low success rate of clinical drug development. Several techniques are emerging to quantify target engagement in cells; however, in situ measurements remain challenging, mainly due to technical limitations. Here, we report the development of a non-covalent clickable probe, based on SCH772984, a slow off-rate ERK1/2 inhibitor, which enabled efficient pull down of ERK1/2 protein via click reaction with tetrazine tagged agarose beads. This was used in a competition setting to measure relative target occupancy by selected ERK1/2 inhibitors. As a reference we used the cellular thermal shift assay, a label-free biophysical assay relying solely on ligand-induced thermodynamic stabilization of proteins. To validate the EC50 values measured by both methods, the results were compared with IC50 data for the phosphorylation of RSK, a downstream substrate of ERK1/2 used as a functional biomarker of ERK1/2 inhibition. We showed that a slow off-rate reversible probe can be used to efficiently pull down cellular proteins, significantly extending the potential of the approach beyond the need for covalent or photoaffinity warheads.

10.
Bioconjug Chem ; 29(6): 2100-2106, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29851469

RESUMO

MDM2 is a key negative regulator of the p53 tumor suppressor. Direct binding of MDM2 to p53 represses the protein's transcriptional activity and induces its polyubiquitination, targeting it for degradation by the proteasome. Consequently, small molecule inhibitors that antagonize MDM2-p53 binding, such as RG7388, have progressed into clinical development aiming to reactivate p53 function in TP53 wild-type tumors. Here, we describe the design, synthesis, and biological evaluation of a trans-cyclooctene tagged derivative of RG7388, RG7388-TCO, which showed high cellular potency and specificity for MDM2. The in-cell reaction of RG7388-TCO with a tetrazine-tagged BODIPY dye enabled fluorescence imaging of endogenous MDM2 in SJSA-1 and T778 tumor cells. RG7388-TCO was also used to pull down MDM2 by reaction with tetrazine-tagged agarose beads in SJSA-1 lysates. The data presented show that RG733-TCO enables precise imaging of MDM2 in cells and can permit a relative assessment of target engagement and MDM2-p53 antagonism in vitro.


Assuntos
Compostos de Boro/química , Corantes Fluorescentes/química , Proteínas Proto-Oncogênicas c-mdm2/análise , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Pirrolidinas/química , Proteína Supressora de Tumor p53/metabolismo , para-Aminobenzoatos/química , Linhagem Celular Tumoral , Química Click , Ciclo-Octanos/análogos & derivados , Ciclo-Octanos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Imagem Óptica/métodos , Ligação Proteica/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , Pirrolidinas/farmacologia , para-Aminobenzoatos/farmacologia
11.
J Med Chem ; 61(11): 4978-4992, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29775310

RESUMO

Aberrant activation of the MAPK pathway drives cell proliferation in multiple cancers. Inhibitors of BRAF and MEK kinases are approved for the treatment of BRAF mutant melanoma, but resistance frequently emerges, often mediated by increased signaling through ERK1/2. Here, we describe the fragment-based generation of ERK1/2 inhibitors that block catalytic phosphorylation of downstream substrates such as RSK but also modulate phosphorylation of ERK1/2 by MEK without directly inhibiting MEK. X-ray crystallographic and biophysical fragment screening followed by structure-guided optimization and growth from the hinge into a pocket proximal to the C-α helix afforded highly potent ERK1/2 inhibitors with excellent kinome selectivity. In BRAF mutant cells, the lead compound suppresses pRSK and pERK levels and inhibits proliferation at low nanomolar concentrations. The lead exhibits tumor regression upon oral dosing in BRAF mutant xenograft models, providing a promising basis for further optimization toward clinical pERK1/2 modulating ERK1/2 inhibitors.


Assuntos
Biocatálise/efeitos dos fármacos , Descoberta de Drogas , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Administração Oral , Animais , Disponibilidade Biológica , Linhagem Celular Tumoral , Humanos , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/química , Proteína Quinase 3 Ativada por Mitógeno/química , Modelos Moleculares , Fosforilação/efeitos dos fármacos , Conformação Proteica , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética
12.
Essays Biochem ; 61(5): 517-527, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28970340

RESUMO

In a time of unprecedented challenges in developing potent, selective and well-tolerated protein inhibitors as therapeutics, drug hunters are increasingly seeking alternative modalities to modulate pharmacological targets. Selective inhibitors are achievable for only a fraction of the proteome, and are not guaranteed to elicit the desired response in patients, especially when pursuing targets identified through genetic knockdown. Targeted protein degradation holds the potential to expand the range of proteins that can be effectively modulated. Drugs inducing protein degradation through misfolding or by modulating cereblon (CRBN) substrate recognition are already approved for treatment of cancer patients. The last decade has seen the development of proteolysis targeting chimeras (PROTACs), small molecules that elicit proteasomal degradation by causing protein polyubiquitination. These have been used to degrade a range of disease-relevant proteins in cells, and some show promising efficacy in preclinical animal models, although their clinical efficacy and tolerability is yet to be proven. This review introduces current strategies for protein degradation with an emphasis on PROTACs and the role of click chemistry in PROTAC research through the formation of libraries of preclicked PROTACs or in-cell click-formed PROTACs (CLIPTACs).


Assuntos
Desenho de Fármacos , Descoberta de Drogas/métodos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/química , Bibliotecas de Moléculas Pequenas/química , Talidomida/análogos & derivados , Proteínas Adaptadoras de Transdução de Sinal , Sítios de Ligação , Cristalografia por Raios X , Humanos , Lenalidomida , Ligantes , Modelos Moleculares , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Proteólise , Bibliotecas de Moléculas Pequenas/síntese química , Talidomida/química , Ubiquitina-Proteína Ligases , Ubiquitinação
13.
J Med Chem ; 60(11): 4611-4625, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28492317

RESUMO

XIAP and cIAP1 are members of the inhibitor of apoptosis protein (IAP) family and are key regulators of anti-apoptotic and pro-survival signaling pathways. Overexpression of IAPs occurs in various cancers and has been associated with tumor progression and resistance to treatment. Structure-based drug design (SBDD) guided by structural information from X-ray crystallography, computational studies, and NMR solution conformational analysis was successfully applied to a fragment-derived lead resulting in AT-IAP, a potent, orally bioavailable, dual antagonist of XIAP and cIAP1 and a structurally novel chemical probe for IAP biology.


Assuntos
Compostos Heterocíclicos com 2 Anéis/química , Compostos Heterocíclicos com 2 Anéis/farmacologia , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Piperazinas/química , Piperazinas/farmacologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Cristalografia por Raios X , Descoberta de Drogas , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Peptidomiméticos , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
14.
Bioconjug Chem ; 28(6): 1677-1683, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28449575

RESUMO

The RAS-RAF-MEK-ERK pathway has been intensively studied in oncology, with RAS known to be mutated in ∼30% of all human cancers. The recent emergence of ERK1/2 inhibitors and their ongoing clinical investigation demands a better understanding of ERK1/2 behavior following small-molecule inhibition. Although fluorescent fusion proteins and fluorescent antibodies are well-established methods of visualizing proteins, we show that ERK1/2 can be visualized via a less-invasive approach based on a two-step process using inverse electron demand Diels-Alder cycloaddition. Our previously reported trans-cyclooctene-tagged covalent ERK1/2 inhibitor was used in a series of imaging experiments following a click reaction with a tetrazine-tagged fluorescent dye. Although limitations were encountered with this approach, endogenous ERK1/2 was successfully imaged in cells, and "on-target" staining was confirmed by over-expressing DUSP5, a nuclear ERK1/2 phosphatase that anchors ERK1/2 in the nucleus.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/análise , Sondas Moleculares/química , Linhagem Celular , Reação de Cicloadição , Fosfatases de Especificidade Dupla/análise , Corantes Fluorescentes , Humanos , Inibidores de Proteínas Quinases
15.
ACS Chem Biol ; 11(11): 3093-3105, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27571355

RESUMO

The members of the NSD subfamily of lysine methyl transferases are compelling oncology targets due to the recent characterization of gain-of-function mutations and translocations in several hematological cancers. To date, these proteins have proven intractable to small molecule inhibition. Here, we present initial efforts to identify inhibitors of MMSET (aka NSD2 or WHSC1) using solution phase and crystal structural methods. On the basis of 2D NMR experiments comparing NSD1 and MMSET structural mobility, we designed an MMSET construct with five point mutations in the N-terminal helix of its SET domain for crystallization experiments and elucidated the structure of the mutant MMSET SET domain at 2.1 Å resolution. Both NSD1 and MMSET crystal systems proved resistant to soaking or cocrystallography with inhibitors. However, use of the close homologue SETD2 as a structural surrogate supported the design and characterization of N-alkyl sinefungin derivatives, which showed low micromolar inhibition against both SETD2 and MMSET.


Assuntos
Adenosina/análogos & derivados , Epigênese Genética , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Oncogenes , Proteínas Repressoras/antagonistas & inibidores , Adenosina/química , Adenosina/farmacologia , Sítios de Ligação , Calorimetria , Cromatografia Líquida , Cristalografia por Raios X , Desenho de Fármacos , Histona-Lisina N-Metiltransferase/genética , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Conformação Proteica , Proteínas Repressoras/genética
16.
Mol Biosyst ; 12(9): 2867-74, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27385078

RESUMO

In-gel activity-based protein profiling (ABPP) offers rapid assessment of the proteome-wide selectivity and target engagement of a chemical tool. Here we demonstrate the use of the inverse electron demand Diels Alder (IEDDA) click reaction for in-gel ABPP by evaluating the selectivity profile and target engagement of a covalent ERK1/2 probe tagged with a trans-cyclooctene group. The chemical probe was shown to bind covalently to Cys166 of ERK2 using protein MS and X-ray crystallography, and displayed submicromolar GI50s in A375 and HCT116 cells. In both cell lines, the probe demonstrated target engagement and a good selectivity profile at low concentrations, which was lost at higher concentrations. The IEDDA cycloaddition enabled fast and quantitative fluorescent tagging for readout with a high background-to-noise ratio and thereby provides a promising alternative to the commonly used copper catalysed alkyne-azide cycloaddition.


Assuntos
Química Click , Proteína Quinase 1 Ativada por Mitógeno/química , Proteína Quinase 3 Ativada por Mitógeno/química , Inibidores de Proteínas Quinases/química , Proteômica , Linhagem Celular , Descoberta de Drogas/métodos , Ativação Enzimática/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Proteoma , Proteômica/métodos
17.
Angew Chem Int Ed Engl ; 55(29): 8353-7, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27264992

RESUMO

A range of isoxazole-containing amino acids was synthesized that displaced acetyl-lysine-containing peptides from the BAZ2A, BRD4(1), and BRD9 bromodomains. Three of these amino acids were incorporated into a histone H4-mimicking peptide and their affinity for BRD4(1) was assessed. Affinities of the isoxazole-containing peptides are comparable to those of a hyperacetylated histone H4-mimicking cognate peptide, and demonstrated a dependence on the position at which the unnatural residue was incorporated. An isoxazole-based alkylating agent was developed to selectively alkylate cysteine residues in situ. Selective monoalkylation of a histone H4-mimicking peptide, containing a lysine to cysteine residue substitution (K12C), resulted in acetyl-lysine mimic incorporation, with high affinity for the BRD4 bromodomain. The same technology was used to alkylate a K18C mutant of histone H3.

18.
J Med Chem ; 59(8): 3991-4006, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27031670

RESUMO

KEAP1 is the key regulator of the NRF2-mediated cytoprotective response, and increasingly recognized as a target for diseases involving oxidative stress. Pharmacological intervention has focused on molecules that decrease NRF2-ubiquitination through covalent modification of KEAP1 cysteine residues, but such electrophilic compounds lack selectivity and may be associated with off-target toxicity. We report here the first use of a fragment-based approach to directly target the KEAP1 Kelch-NRF2 interaction. X-ray crystallographic screening identified three distinct "hot-spots" for fragment binding within the NRF2 binding pocket of KEAP1, allowing progression of a weak fragment hit to molecules with nanomolar affinity for KEAP1 while maintaining drug-like properties. This work resulted in a promising lead compound which exhibits tight and selective binding to KEAP1, and activates the NRF2 antioxidant response in cellular and in vivo models, thereby providing a high quality chemical probe to explore the therapeutic potential of disrupting the KEAP1-NRF2 interaction.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Células Cultivadas , Cristalografia por Raios X , Descoberta de Drogas , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/química , Camundongos , Fator 2 Relacionado a NF-E2/química , Ligação Proteica
19.
ACS Cent Sci ; 2(12): 927-934, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-28058282

RESUMO

Selective degradation of proteins by proteolysis targeting chimeras (PROTACs) offers a promising potential alternative to protein inhibition for therapeutic intervention. Current PROTAC molecules incorporate a ligand for the target protein, a linker, and an E3 ubiquitin ligase recruiting group, which bring together target protein and ubiquitinating machinery. Such hetero-bifunctional molecules require significant linker optimization and possess high molecular weight, which can limit cellular permeation, solubility, and other drug-like properties. We show here that the hetero-bifunctional molecule can be formed intracellularly by bio-orthogonal click combination of two smaller precursors. We designed a tetrazine tagged thalidomide derivative which reacts rapidly with a trans-cyclo-octene tagged ligand of the target protein in cells to form a cereblon E3 ligase recruiting PROTAC molecule. The in-cell click-formed proteolysis targeting chimeras (CLIPTACs) were successfully used to degrade two key oncology targets, BRD4 and ERK1/2. ERK1/2 degradation was achieved using a CLIPTAC based on a covalent inhibitor. We expect this approach to be readily extendable to other inhibitor-protein systems because the tagged E3 ligase recruiter is capable of undergoing the click reaction with a suitably tagged ligand of any protein of interest to elicit its degradation.

20.
Nat Struct Mol Biol ; 21(12): 1047-57, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25383670

RESUMO

Small-molecule BET inhibitors interfere with the epigenetic interactions between acetylated histones and the bromodomains of the BET family proteins, including BRD4, and they potently inhibit growth of malignant cells by targeting cancer-promoting genes. BRD4 interacts with the pause-release factor P-TEFb and has been proposed to release RNA polymerase II (Pol II) from promoter-proximal pausing. We show that BRD4 occupies widespread genomic regions in mouse cells and directly stimulates elongation of both protein-coding transcripts and noncoding enhancer RNAs (eRNAs), in a manner dependent on bromodomain function. BRD4 interacts with elongating Pol II complexes and assists Pol II in progression through hyperacetylated nucleosomes by interacting with acetylated histones via bromodomains. On active enhancers, the BET inhibitor JQ1 antagonizes BRD4-associated eRNA synthesis. Thus, BRD4 is involved in multiple steps of the transcription hierarchy, primarily by facilitating transcript elongation both at enhancers and on gene bodies independently of P-TEFb.


Assuntos
Histonas/metabolismo , Proteínas Nucleares/metabolismo , RNA/genética , Elongação da Transcrição Genética , Fatores de Transcrição/metabolismo , Acetilação , Animais , Elementos Facilitadores Genéticos , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Proteínas Nucleares/análise , Proteínas Nucleares/antagonistas & inibidores , Nucleossomos/genética , Nucleossomos/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , Mapas de Interação de Proteínas , RNA Polimerase II/metabolismo , RNA não Traduzido/genética , Fatores de Transcrição/análise , Fatores de Transcrição/antagonistas & inibidores , Iniciação da Transcrição Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...