Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 2431, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508475

RESUMO

Diodes are key elements for electronics, optics, and detection. Their evolution towards low dissipation electronics has seen the hybridization with superconductors and the realization of supercurrent diodes with zero resistance in only one direction. Here, we present the quasi-particle counterpart, a superconducting tunnel diode with zero conductance in only one direction. The direction-selective propagation of the charge has been obtained through the broken electron-hole symmetry induced by the spin selection of the ferromagnetic tunnel barrier: a EuS thin film separating a superconducting Al and a normal metal Cu layer. The Cu/EuS/Al tunnel junction achieves a large rectification (up to ∼40%) already for a small voltage bias (∼200 µV) thanks to the small energy scale of the system: the Al superconducting gap. With the help of an analytical theoretical model we can link the maximum rectification to the spin polarization (P) of the barrier and describe the quasi-ideal Shockley-diode behavior of the junction. This cryogenic spintronic rectifier is promising for the application in highly-sensitive radiation detection for which two different configurations are evaluated. In addition, the superconducting diode may pave the way for future low-dissipation and fast superconducting electronics.

2.
Phys Rev Lett ; 118(23): 237701, 2017 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-28644671

RESUMO

We analyze the statistics of charge and energy currents and spin torque in a metallic nanomagnet coupled to a large magnetic metal via a tunnel contact. We derive a Keldysh action for the tunnel barrier, describing the stochastic currents in the presence of a magnetization precessing with the rate Ω. In contrast to some earlier approaches, our result is valid for an arbitrary ratio of ℏΩ/k_{B}T. We illustrate the use of the action by deriving spintronic fluctuation relations, the quantum limit of pumped current noise, and consider the fluctuations in two specific cases: the situation with a stable precession of magnetization driven by spin transfer torque, and the torque-induced switching between the minima of a magnetic anisotropy. The quantum corrections are relevant when the precession rate exceeds the temperature T, i.e., for ℏΩ≳k_{B}T.

3.
Phys Rev Lett ; 118(10): 103601, 2017 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-28339232

RESUMO

A process which strongly amplifies both quadrature amplitudes of an oscillatory signal necessarily adds noise. Alternatively, if the information in one quadrature is lost in phase-sensitive amplification, it is possible to completely reconstruct the other quadrature. Here we demonstrate such a nearly perfect phase-sensitive measurement using a cavity optomechanical scheme, characterized by an extremely small noise less than 0.2 quanta. The device also strongly squeezes microwave radiation by 8 dB below vacuum. A source of bright squeezed microwaves opens up applications in manipulations of quantum systems, and noiseless amplification can be used even at modest cryogenic temperatures.

4.
Phys Rev Lett ; 114(16): 167002, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25955071

RESUMO

We describe far-from-equilibrium nonlocal transport in a diffusive superconducting wire with a Zeeman splitting, taking into account different spin relaxation mechanisms. We demonstrate that due to the Zeeman splitting, an injection of current in a superconducting wire creates spin accumulation that can only relax via thermalization. This effect leads to a long-range spin accumulation detectable in the nonlocal signal. Our model gives a qualitative explanation and provides accurate fits of recent experimental results in terms of realistic parameters.

5.
Nat Commun ; 6: 6981, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25912295

RESUMO

Coupling electromagnetic waves in a cavity and mechanical vibrations via the radiation pressure of photons is a promising platform for investigations of quantum-mechanical properties of motion. A drawback is that the effect of one photon tends to be tiny, and hence one of the pressing challenges is to substantially increase the interaction strength. A novel scenario is to introduce into the setup a quantum two-level system (qubit), which, besides strengthening the coupling, allows for rich physics via strongly enhanced nonlinearities. Here we present a design of cavity optomechanics in the microwave frequency regime involving a Josephson junction qubit. We demonstrate boosting of the radiation-pressure interaction by six orders of magnitude, allowing to approach the strong coupling regime. We observe nonlinear phenomena at single-photon energies, such as an enhanced damping attributed to the qubit. This work opens up nonlinear cavity optomechanics as a plausible tool for the study of quantum properties of motion.

6.
Phys Rev Lett ; 114(6): 067001, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25723238

RESUMO

The concept of thermophase refers to the appearance of a phase gradient inside a superconductor originating from the presence of an applied temperature bias across it. The resulting supercurrent flow may, in suitable conditions, fully counterbalance the temperature-bias-induced quasiparticle current therefore preventing the formation of any voltage drop, i.e., a thermovoltage, across the superconductor. Yet, the appearance of a thermophase is expected to occur in Josephson-coupled superconductors as well. Here, we theoretically investigate the thermoelectric response of a thermally biased Josephson junction based on a ferromagnetic insulator. In particular, we predict the occurrence of a very large thermophase that can reach π/2 across the contact for suitable temperatures and structure parameters; i.e., the quasiparticle thermal current can reach the critical current. Such a thermophase can be several orders of magnitude larger than that predicted to occur in conventional Josephson tunnel junctions. In order to assess experimentally the predicted very large thermophase, we propose a realistic setup realizable with state-of-the-art nanofabrication techniques and well-established materials, based on a superconducting quantum interference device. This effect could be of strong relevance in several low-temperature applications, for example, for revealing tiny temperature differences generated by coupling the electromagnetic radiation to one of the superconductors forming the junction.

7.
Phys Rev Lett ; 112(5): 057001, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24580623

RESUMO

We show that a huge thermoelectric effect can be observed by contacting a superconductor whose density of states is spin split by a Zeeman field with a ferromagnet with a nonzero polarization. The resulting thermopower exceeds kB/e by a large factor, and the thermoelectric figure of merit ZT can far exceed unity, leading to heat engine efficiencies close to the Carnot limit. We also show that spin-polarized currents can be generated in the superconductor by applying a temperature bias.

8.
Phys Rev Lett ; 109(6): 067002, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-23006295

RESUMO

We study a diffusive superconductor-normal-metal-superconductor junction in an environment with intrinsic incoherent fluctuations which couple to the junction through an electromagnetic field. When the temperature of the junction differs from that of the environment, this coupling leads to an energy transfer between the two systems, taking the junction out of equilibrium. We describe this effect in the linear response regime and show that the change in the supercurrent induced by this coupling leads to qualitative changes in the current-phase relation and, for a certain range of parameters, an increase in the critical current of the junction. In addition to normal metals, similar effects can be expected also in other conducting weak links.

9.
Phys Rev Lett ; 108(6): 067002, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22401111

RESUMO

We propose a mesoscopic setup which exhibits strong and manifestly non-Gaussian fluctuations of energy and temperature when suitably driven out of equilibrium. The setup consists of a normal metal island (N) coupled by tunnel junctions (I) to two superconducting leads (S), forming a SINIS structure, and is biased near the threshold voltage for quasiparticle tunneling, eV≈2Δ. The fluctuations can be measured by monitoring the time-dependent electric current through the system. This makes the setup suitable for the realization of feedback schemes which can be used to stabilize the temperature to the desired value.

10.
Nature ; 480(7377): 351-4, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22170682

RESUMO

The sensitive measurement of electrical signals is at the heart of modern technology. According to the principles of quantum mechanics, any detector or amplifier necessarily adds a certain amount of noise to the signal, equal to at least the noise added by quantum fluctuations. This quantum limit of added noise has nearly been reached in superconducting devices that take advantage of nonlinearities in Josephson junctions. Here we introduce the concept of the amplification of microwave signals using mechanical oscillation, which seems likely to enable quantum-limited operation. We drive a nanomechanical resonator with a radiation pressure force, and provide an experimental demonstration and an analytical description of how a signal input to a microwave cavity induces coherent stimulated emission and, consequently, signal amplification. This generic scheme, which is based on two linear oscillators, has the advantage of being conceptually and practically simpler than the Josephson junction devices. In our device, we achieve signal amplification of 25 decibels with the addition of 20 quanta of noise, which is consistent with the expected amount of added noise. The generality of the model allows for realization in other physical systems as well, and we anticipate that near-quantum-limited mechanical microwave amplification will soon be feasible in various applications involving integrated electrical circuits.

11.
Sci Rep ; 1: 3, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22355522

RESUMO

The supercurrent that establishes between two superconductors connected through a normal N mesoscopic link is carried by quasiparticule states localized within the link, the "Andreev bound states (ABS)". Whereas the dc properties of this supercurrent in SNS junctions are now well understood, its dynamical properties are still an unresolved issue. In this letter we probe this dynamics by inductively coupling an NS ring to a multimode superconducting resonator, thereby implementing both a phase bias and current detection at high frequency. Whereas at very low temperatures we essentially measure the phase derivative of the supercurrent, at higher temperature we find a surprisingly strong frequency dependence in the current response of the ring: the ABS do not follow adiabatically the phase modulation. This experiment also illustrates a new tool to probe the fundamental time scales of phase coherent systems that are decoupled from macroscopic normal contacts and thermal baths.


Assuntos
Condutividade Elétrica , Metais/química , Modelos Teóricos , Simulação por Computador
12.
Phys Rev Lett ; 104(19): 196805, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20866990

RESUMO

We consider the fully overheated single-electron transistor, where the heat balance is determined entirely by electron transfers. We find three distinct transport regimes corresponding to cotunneling, single-electron tunneling, and a competition between the two. We find an anomalous sensitivity to temperature fluctuations at the crossover between the two latter regimes that manifests in an exceptionally large Fano factor of current noise.

13.
Phys Rev Lett ; 105(11): 117001, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20867598

RESUMO

We present a microscopic theory of the effect of a microwave field on the supercurrent through a quantum point contact of arbitrary transmission. Our theory predicts that (i) for low temperatures and weak fields, the supercurrent is suppressed at certain values of the superconducting phase, (ii) at strong fields, the current-phase relation is strongly modified and the current can even reverse its sign, and (iii) at finite temperatures, the microwave field can enhance the critical current of the junction. Apart from their fundamental interest, our findings are also important for the description of experiments that aim at the manipulation of the quantum state of atomic point contacts.

14.
Phys Rev Lett ; 105(9): 097004, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20868187

RESUMO

We study heat transport in hybrid lateral normal-metal-superconductor-normal-metal structures. We find the thermal conductance of a short superconducting wire to be strongly enhanced beyond the BCS value due to the inverse proximity effect, resulting from contributions of elastic cotunneling and crossed Andreev reflection of quasiparticles. Our measurements agree with a model based on the quasiclassical theory of inhomogeneous superconductivity in the diffusive limit.

15.
Phys Rev Lett ; 102(13): 130605, 2009 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19392343

RESUMO

We study the statistics of the fluctuating electron temperature in a metallic island coupled to reservoirs via resistive contacts and driven out of equilibrium by either a temperature or voltage difference between the reservoirs. The fluctuations of temperature are well defined provided that the energy relaxation rate inside the island exceeds the rate of energy exchange with the reservoirs. We quantify these fluctuations in the regime beyond the Gaussian approximation and elucidate their dependence on the nature of the electronic contacts.

16.
Phys Rev Lett ; 98(20): 207001, 2007 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-17677730

RESUMO

We use a hysteretic Josephson junction as an on-chip detector of the third moment of shot noise of a tunnel junction. The detectable bandwidth is determined by the plasma frequency of the detector, which is about 50 GHz in the present experiment. The third moment of shot noise results in a measurable change of the switching rate when reversing polarity of the current through the noise source. We analyze the observed asymmetry assuming adiabatic response of the detector.

17.
Phys Rev Lett ; 99(21): 217003, 2007 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-18233243

RESUMO

We study a mesoscopic normal-metal structure with four superconducting contacts, two of which are joined into a loop. The structure undergoes transitions between three (meta)stable states, with different phase configurations triggered by nonequilibrium conditions. These transitions result in spectacular changes in the magnetoresistance. We find a qualitative agreement between the experiments and a theory based on the quasiclassical Keldysh formalism.

18.
Phys Rev Lett ; 93(19): 197002, 2004 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-15600870

RESUMO

We have investigated the influence of shot noise on the IV curves of a single mesoscopic Josephson junction. We observe a linear enhancement of zero-bias conductance of the Josephson junction with increasing shot-noise power. Moreover, the IV curves become increasingly asymmetric. Our analysis on the asymmetry shows that the Coulomb blockade of Cooper pairs is strongly influenced by the non-Gaussian character of the shot noise.

19.
Phys Rev Lett ; 92(13): 137001, 2004 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-15089638

RESUMO

The distinctive quasiparticle distribution existing under nonequilibrium in a superconductor-insulator-normal metal-insulator-superconductor mesoscopic line is proposed as a novel tool to control the supercurrent intensity in a long Josephson weak link. We present a description of this system in the framework of the diffusive-limit quasiclassical Green-function theory and take into account the effects of inelastic scattering with arbitrary strength. Supercurrent enhancement and suppression, including a marked transition to a pi junction, are striking features leading to a fully tunable structure.

20.
Phys Rev Lett ; 92(5): 056804, 2004 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-14995329

RESUMO

We demonstrate both theoretically and experimentally two limiting factors in cooling electrons using biased tunnel junctions to extract heat from a normal metal into a superconductor. First, when the injection rate of electrons exceeds the internal relaxation rate in the metal to be cooled, the electrons do not obey the Fermi-Dirac distribution, and the concept of temperature cannot be applied as such. Second, at low bath temperatures, states within the gap induce anomalous heating and yield a theoretical limit of the achievable minimum temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...