Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Magn Reson ; 338: 107195, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398651

RESUMO

Protein trans-splicing catalyzed by split inteins has been used for segmental isotopic labeling of proteins for alleviating the complexity of NMR signals. Whereas inteins spontaneously trigger protein splicing upon protein folding, inteins from extremely halophilic organisms require a high salinity condition to induce protein splicing. We designed and created a salt-inducible intein from the widely used DnaE intein from Nostoc punctiforme by introducing 29 mutations, which required a lower salt concentration than naturally occurring halo-obligate inteins. We determined the NMR solution structure of the engineered salt-inducible DnaE intein in 2 M NaCl, showing the essentially identical three-dimensional structure to the original one, albeit it unfolds without salts. The NMR structure of a halo-obligate intein under high salinity suggests that the stabilization of the active folded conformation is not a mere result of various intramolecular interactions but the subtle energy balance from the complex interactions, including the solvation energy, which involve waters, ions, co-solutes, and protein polypeptide chains.


Assuntos
Inteínas , Nostoc , DNA Polimerase III/química , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Inteínas/genética , Espectroscopia de Ressonância Magnética , Nostoc/química , Nostoc/genética , Nostoc/metabolismo , Processamento de Proteína
2.
Molecules ; 26(3)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535444

RESUMO

Uniformly 13C- and 15N-labeled samples ensure fast and reliable nuclear magnetic resonance (NMR) assignments of proteins and are commonly used for structure elucidation by NMR. However, the preparation of uniformly labeled samples is a labor-intensive and expensive step. Reducing the portion of 13C-labeled glucose by a factor of five using a fractional 20% 13C- and 100% 15N-labeling scheme could lower the total chemical costs, yet retaining sufficient structural information of uniformly [13C, 15N]-labeled sample as a result of the improved sensitivity of NMR instruments. Moreover, fractional 13C-labeling can facilitate reliable resonance assignments of sidechains because of the biosynthetic pathways of each amino-acid. Preparation of only one [20% 13C, 100% 15N]-labeled sample for small proteins (<15 kDa) could also eliminate redundant sample preparations of 100% 15N-labeled and uniformly 100% [13C, 15N]-labeled samples of proteins. We determined the NMR structures of a small alpha-helical protein, the C domain of IgG-binding protein A from Staphylococcus aureus (SpaC), and a small beta-sheet protein, CBM64 module using [20% 13C, 100% 15N]-labeled sample and compared with the crystal structures and the NMR structures derived from the 100% [13C, 15N]-labeled sample. Our results suggest that one [20% 13C, 100% 15N]-labeled sample of small proteins could be routinely used as an alternative to conventional 100% [13C, 15N]-labeling for backbone resonance assignments, NMR structure determination, 15N-relaxation analysis, and ligand-protein interaction.


Assuntos
Isótopos de Carbono/análise , Celulase/química , Isótopos de Nitrogênio/análise , Ressonância Magnética Nuclear Biomolecular/métodos , Proteína Estafilocócica A/química , Estrutura Secundária de Proteína , Tetrahymena thermophila/enzimologia
3.
J Phys Chem B ; 122(25): 6559-6569, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29812937

RESUMO

Conformational fluctuations and rotational tumbling of proteins can be experimentally accessed with nuclear spin relaxation experiments. However, interpretation of molecular dynamics from the experimental data is often complicated, especially for molecules with anisotropic shape. Here, we apply classical molecular dynamics simulations to interpret the conformational fluctuations and rotational tumbling of proteins with arbitrarily anisotropic shape. The direct calculation of spin relaxation times from simulation data did not reproduce the experimental data. This was successfully corrected by scaling the overall rotational diffusion coefficients around the protein inertia axes with a constant factor. The achieved good agreement with experiments allowed the interpretation of the internal and overall dynamics of proteins with significantly anisotropic shape. The overall rotational diffusion was found to be Brownian, having only a short subdiffusive region below 0.12 ns. The presented methodology can be applied to interpret rotational dynamics and conformation fluctuations of proteins with arbitrary anisotropic shape. However, a water model with more realistic dynamical properties is probably required for intrinsically disordered proteins.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Simulação de Dinâmica Molecular , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Helicobacter pylori/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Isótopos de Nitrogênio/química , Domínios Proteicos , Marcadores de Spin , Água/química
4.
Biomacromolecules ; 19(7): 2708-2720, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29614220

RESUMO

Recent developments in ionic liquid electrolytes for cellulose or biomass dissolution has also allowed for high-resolution 1H and 13C NMR on very high molecular weight cellulose. This permits the development of advanced liquid-state quantitative NMR methods for characterization of unsubstituted and low degree of substitution celluloses, for example, surface-modified nanocelluloses, which are insoluble in all molecular solvents. As such, we present the use of the tetrabutylphosphonium acetate ([P4444][OAc]):DMSO- d6 electrolyte in the 1D and 2D NMR characterization of poly(methyl methacrylate) (PMMA)-grafted cellulose nanocrystals (CNCs). PMMA- g-CNCs was chosen as a difficult model to study, to illustrate the potential of the technique. The chemical shift range of [P4444][OAc] is completely upfield of the cellulose backbone signals, avoiding signal overlap. In addition, application of diffusion-editing for 1H and HSQC was shown to be effective in the discrimination between PMMA polymer graft resonances and those from low molecular weight components arising from the solvent system. The bulk ratio of methyl methacrylate monomer to anhydroglucose unit was determined using a combination of HSQC and quantitative 13C NMR. After detachment and recovery of the PMMA grafts, through methanolysis, DOSY NMR was used to determine the average self-diffusion coefficient and, hence, molecular weight of the grafts compared to self-diffusion coefficients for PMMA GPC standards. This finally led to a calculation of both graft length and graft density using liquid-state NMR techniques. In addition, it was possible to discriminate between triads and tetrads, associated with PMMA tacticity, of the PMMA still attached to the CNCs (before methanolysis). CNC reducing end and sulfate half ester resonances, from sulfuric acid hydrolysis, were also assignable. Furthermore, other biopolymers, such as hemicelluloses and proteins (silk and wool), were found to be soluble in the electrolyte media, allowing for wider application of this method beyond just cellulose analytics.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Celulose/análogos & derivados , Nanopartículas/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/instrumentação , Dimetil Sulfóxido/química , Eletrólitos/química , Polimetil Metacrilato/química
5.
RNA ; 24(3): 396-409, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29255062

RESUMO

Mutations in the components of the minor spliceosome underlie several human diseases. A subset of patients with isolated growth hormone deficiency (IGHD) harbors mutations in the RNPC3 gene, which encodes the minor spliceosome-specific U11/U12-65K protein. Although a previous study showed that IGHD patient cells have defects in U12-type intron recognition, the biochemical effects of these mutations on the 65K protein have not been characterized. Here, we show that a proline-to-threonine missense mutation (P474T) and a nonsense mutation (R502X) in the C-terminal RNA recognition motif (C-RRM) of the 65K protein impair the binding of 65K to U12 and U6atac snRNAs. We further show that the nonsense allele is targeted to the nonsense-mediated decay (NMD) pathway, but in an isoform-specific manner, with the nuclear-retained 65K long-3'UTR isoform escaping the NMD pathway. In contrast, the missense P474T mutation leads, in addition to the RNA-binding defect, to a partial defect in the folding of the C-RRM and reduced stability of the full-length protein, thus reducing the formation of U11/U12 di-snRNP complexes. We propose that both the C-RRM folding defect and NMD-mediated decrease in the levels of the U11/U12-65K protein reduce formation of the U12-type intron recognition complex and missplicing of a subset of minor introns leading to pituitary hypoplasia and a subsequent defect in growth hormone secretion.


Assuntos
Nanismo Hipofisário/genética , Modelos Moleculares , Degradação do RNAm Mediada por Códon sem Sentido , Proteínas Nucleares/genética , RNA Nuclear Pequeno/genética , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Spliceossomos , Códon sem Sentido , Nanismo Hipofisário/metabolismo , Células HeLa , Humanos , Íntrons/genética , Mutação de Sentido Incorreto , Proteínas Nucleares/química , Prolina , RNA Nuclear Pequeno/química , Motivos de Ligação ao RNA , Proteínas de Ligação a RNA/química , Ribonucleoproteínas Nucleares Pequenas/química , Treonina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...