Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 57(3): 377-381, 2018 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-29400784

RESUMO

The vast development of integrated quantum photonic technology enables the implementation of compact and stable interferometric networks. In particular, laser-written waveguide structures allow for complex 3D circuits and polarization-encoded qubit manipulation. However, the main limitation in the scaling up of integrated quantum devices is the single-photon loss due to mode-profile mismatch when coupling to standard fibers or other optical platforms. Here we demonstrate tapered waveguide structures realized by an adapted femtosecond laser writing technique. We show that coupling to standard single-mode fibers can be enhanced up to 77% while keeping the fabrication effort negligible. This improvement provides an important step for processing multiphoton states on chip.

2.
Nat Commun ; 7: 11282, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27080915

RESUMO

Transport phenomena on a quantum scale appear in a variety of systems, ranging from photosynthetic complexes to engineered quantum devices. It has been predicted that the efficiency of coherent transport can be enhanced through dynamic interaction between the system and a noisy environment. We report an experimental simulation of environment-assisted coherent transport, using an engineered network of laser-written waveguides, with relative energies and inter-waveguide couplings tailored to yield the desired Hamiltonian. Controllable-strength decoherence is simulated by broadening the bandwidth of the input illumination, yielding a significant increase in transport efficiency relative to the narrowband case. We show integrated optics to be suitable for simulating specific target Hamiltonians as well as open quantum systems with controllable loss and decoherence.

3.
Nat Commun ; 7: 11027, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-27006089

RESUMO

Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools.

4.
Sci Rep ; 6: 19489, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26771053

RESUMO

The key requirement for harnessing the quantum properties of light is the capability to detect and count individual photons. Of particular interest are photon-number-resolving detectors, which allow one to determine whether a state of light is classical or genuinely quantum. Existing schemes for addressing this challenge rely on a proportional conversion of photons to electrons. As such, they are capable of correctly characterizing small photon fluxes, yet are limited by uncertainties in the conversion rate. In this work, we employ a divide-and-conquer approach to infallibly discerning non-classicality of states of light. This is achieved by transforming the incident fields into uniform spatial distributions that readily lend themselves for characterization by standard on-off detectors. Since the exact statistics of the light stream in multiplexed on-off detectors are click statistics, our technique is freely scalable to accommodate-in principle-arbitrarily large photon fluxes. Our experiments pave the way towards genuine integrated photon-number-resolving detection for advanced on-chip photonic quantum networks.

5.
Nat Commun ; 6: 8273, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26391683

RESUMO

Bloch oscillations of quantum particles manifest themselves as periodic spreading and relocalization of the associated wave functions when traversing lattice potentials subject to external gradient forces. Albeit this phenomenon is deeply rooted into the very foundations of quantum mechanics, all experimental observations so far have only contemplated dynamics of one and two particles initially prepared in separable local states. Evidently, a more general description of genuinely quantum Bloch oscillations will be achieved on excitation of a Bloch oscillator by nonlocal states. Here we report the observation of Bloch oscillations of two-particle N00N states, and discuss the nonlocality on the ground of Bell-like inequalities. The time evolution of two-photon N00N states in Bloch oscillators, whether symmetric, antisymmetric or partially symmetric, reveals transitions from particle antibunching to bunching. Consequently, the initial states can be tailored to produce spatial correlations akin to those of bosons, fermions and anyons, presenting potential applications in photonic quantum simulation.

6.
Sci Rep ; 4: 4118, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24534893

RESUMO

Chip-based photonic quantum computing is an emerging technology that promises much speedup over conventional computers at small integration volumes. Particular interest is thereby given to polarisation-encoded photonic qubits, and many protocols have been developed for this encoding. However, arbitrary wave plate operation on chip are not available so far, preventing from the implementation of integrated universal quantum computing algorithms. In our work we close this gap and present Hadamard, Pauli-X, and rotation gates of high fidelity for photonic polarisation qubits on chip by employing a reorientation of the optical axis of birefringent waveguides. The optical axis of the birefringent waveguide is rotated due to the impact of an artificial stress field created by an additional modification close to the waveguide. By adjusting this length of the defect along the waveguide, the retardation between ordinary and extraordinary field components is precisely tunable including half-wave plate and quarter-wave plate operations. Our approach demonstrates the full range control of orientation and strength of the induced birefringence and thus allows arbitrary wave plate operations without affecting the degree of polarisation or introducing additional losses to the waveguides. The implemented gates are tested with classical and quantum light.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA