Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Hum Reprod Open ; 2024(1): hoae009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425578

RESUMO

STUDY QUESTION: Is pronuclear transfer (PNT) capable of restoring embryo developmental arrest caused by cytoplasmic inferiority of in vitro-grown (IVG) mouse oocytes? SUMMARY ANSWER: PNT to in vivo matured cytoplasm significantly improved embryo development of IVG mouse oocytes, leading to living, fertile offspring. WHAT IS KNOWN ALREADY: In vitro follicle culture has been considered as a fertility preservation option for cancer patients. Studies describing the culture of human follicles remain scarce, owing to low availability of tissue. Mouse models have extensively been used to study and optimize follicle culture. Although important achievements have been accomplished, including the production of healthy offspring in mice, IVG oocytes are of inferior quality when compared to in vivo-grown oocytes, likely because of cytoplasmic incompetence. STUDY DESIGN SIZE DURATION: The study was carried out from September 2020 to February 2022. In total, 120 15-day-old B6D2 mice were used to perform secondary follicle culture and assess the quality of IVG oocytes. In vivo-grown control oocytes were obtained from 85 8- to 12-week-old B6D2 mice, following ovarian stimulation. For sperm collection, four B6D2 males between 10 and 14 weeks old were used. For embryo transfer, 14 8- to 12-week-old CD1 females served as surrogate mothers and 10 CD1 vasectomized males 10-24 weeks old were used to generate pseudo-pregnant females. Finally, for mating, four B6D2 female mice aged 8-10 weeks and two B6D2 male mice aged 10 weeks old were used to confirm the fertility of nuclear transfer (NT)-derived pups. PARTICIPANTS/MATERIALS SETTING METHODS: Secondary follicles from 15-day-old B6D2 mice were isolated from the ovaries and cultured for 9 days, before a maturation stimulus was given. Following 16-18 h of maturation, oocytes were collected and evaluated on maturation rate, oocyte diameter, activation rate, spindle morphology, calcium-releasing ability, and mitochondrial membrane potential. For every experiment, in vivo-grown oocytes were used as a control for comparison. When cytoplasmic immaturity and poor embryo development were confirmed in IVG oocytes, PNT was performed. For this, the pronuclei from IVG oocytes, created following parthenogenetic activation and IVF, were transferred to the cytoplasm of fertilized, in vivo-grown oocytes. Genetic analysis and embryo transfer of the generated embryos were implemented to confirm the safety of the technique. MAIN RESULTS AND THE ROLE OF CHANCE: Following 9 days of follicle culture, 703 oocytes were collected, of which 76% showed maturation to the metaphase II stage. Oocyte diameters were significantly lower in IVG oocytes, measuring 67.4 µm versus 73.1 µm in controls (P < 0.001). Spindle morphology did not differ significantly between IVG and control oocytes, but calcium-releasing ability was compromised in the IVG group. An average calcium release of 1.62 arbitrary units was observed in IVG oocytes, significantly lower than 5.74 in control oocytes (P < 0.001). Finally, mitochondrial membrane potential was inferior in IVG compared to the control group, reaching an average value of 0.95 versus 2.27 (P < 0.001). Developmental potential of IVG oocytes was assessed following parthenogenetic activation with strontium chloride (SrCl2). Only 59.4% of IVG oocytes cleaved to two cells and 36.3% reached the blastocyst stage, significantly lower than 89.5% and 88.2% in control oocytes, respectively (P < 0.001 and 0.001). Both PNT and spindle transfer (ST) were explored in pilot experiments with parthenogenetically activated oocytes, as a means to overcome poor embryo development. After the added value of NT was confirmed, we continued with the generation of biparental embryos by PNT. For this purpose, IVG and control oocytes first underwent IVF. Only 15.5% of IVG oocytes were normally fertilized, in contrast to 45.5% in controls (P < 0.001), with resulting failure of blastocyst formation in the IVG group (0 versus 86.2%, P < 0.001). When the pronuclei of IVG zygotes were transferred to the cytoplasm of control zygotes, the blastocyst rate was restored to 86.9%, a similar level as the control. Genetic analysis of PNT embryos revealed a normal chromosomal profile, to a rate of 80%. Finally, the generation of living, fertile offspring from PNT was possible following embryo transfer to surrogate mothers. LARGE-SCALE DATA: N/A. LIMITATIONS REASONS FOR CAUTION: Genetic profiles of analysed embryos from PNT originate from groups that are too small to draw concrete conclusions, whilst ST, which would be the preferred NT approach, could not be used for the generation of biparental embryos owing to technical limitations. Even though promising, the use of PNT should be considered as experimental. Furthermore, results were acquired in a mouse model, so validation of the technique in human IVG oocytes needs to be performed to evaluate the clinical relevance of the technology. The genetic profiles from IVG oocytes, which would be the ultimate characterization for chromosomal abnormalities, were not analysed owing to limitations in the reliable analysis of single cells. WIDER IMPLICATIONS OF THE FINDINGS: PNT has the ability to overcome the poor cytoplasmic quality of IVG mouse oocytes. Considering the low maturation efficiency of human IVG oocytes and potential detrimental effects following long-term in vitro culture, NT could be applied to rescue embryo development and could lead to an increased availability of good quality embryos for transfer. STUDY FUNDING/COMPETING INTERESTS: A.C. is a holder of FWO (Fonds voor Wetenschappelijk Onderzoek) grants (1S80220N and 1S80222N). B.H. and A.V.S. have been awarded with a special BOF (Bijzonder Onderzoeksfonds), GOA (Geconcerteerde onderzoeksacties) 2018000504 (GOA030-18 BOF) funding. B.H. has been receiving unrestricted educational funding from Ferring Pharmaceuticals (Aalst, Belgium). The authors declare that they have no conflict of interest.

2.
Mol Ther ; 31(8): 2326-2341, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37376733

RESUMO

Human germline gene correction by targeted nucleases holds great promise for reducing mutation transmission. However, recent studies have reported concerning observations in CRISPR-Cas9-targeted human embryos, including mosaicism and loss of heterozygosity (LOH). The latter has been associated with either gene conversion or (partial) chromosome loss events. In this study, we aimed to correct a heterozygous basepair substitution in PLCZ1, related to infertility. In 36% of the targeted embryos that originated from mutant sperm, only wild-type alleles were observed. By performing genome-wide double-digest restriction site-associated DNA sequencing, integrity of the targeted chromosome (i.e., no deletions larger than 3 Mb or chromosome loss) was confirmed in all seven targeted GENType-analyzed embryos (mutant editing and absence of mutation), while short-range LOH events (shorter than 10 Mb) were clearly observed by single-nucleotide polymorphism assessment in two of these embryos. These results fuel the currently ongoing discussion on double-strand break repair in early human embryos, making a case for the occurrence of gene conversion events or partial template-based homology-directed repair.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Masculino , Edição de Genes/métodos , Sêmen , Mutação , Alelos , Cromossomos
3.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047535

RESUMO

While human in vitro embryo production is generally performed individually, animal models have shown that culturing embryos in groups improves blastocyst yield and quality. Paracrine embryotrophins could be responsible for this improved embryo development, but their identity remains largely unknown. We hypothesize that supplementation of embryotrophic proteins to a culture medium could be the key to improve individual embryo production. In this study, proteomics screening of culture media conditioned by bovine embryos revealed cathepsin-L as being secreted by both excellent- and good-quality embryos, while being absent in the medium conditioned by poor-quality embryos. The embryotrophic role of cathepsin-L was explored in vitro, whereby bovine zygotes were cultured individually for 8 days with or without cathepsin-L. Preliminary dose-response experiments pointed out 100 ng/mL as the optimal concentration of cathepsin-L in embryo culture medium. Supplementation of cathepsin-L to individual culture systems significantly improved blastocyst development and quality in terms of blastocoel formation at day 7, and the hatching ratio and apoptotic cell ratio at day 8, compared to the control. Taken together, cathepsin-L acts as an important embryotrophin by increasing embryo quality, and regulating blastulation and hatching in bovine in vitro embryo production.


Assuntos
Técnicas de Cultura Embrionária , Desenvolvimento Embrionário , Bovinos , Animais , Humanos , Zigoto , Blastocisto/metabolismo , Catepsinas/metabolismo , Meios de Cultura/farmacologia , Meios de Cultura/metabolismo , Fertilização in vitro
4.
Nat Commun ; 14(1): 1210, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869101

RESUMO

Early during preimplantation development and in heterogeneous mouse embryonic stem cells (mESC) culture, pluripotent cells are specified towards either the primed epiblast or the primitive endoderm (PE) lineage. Canonical Wnt signaling is crucial for safeguarding naive pluripotency and embryo implantation, yet the role and relevance of canonical Wnt inhibition during early mammalian development remains unknown. Here, we demonstrate that transcriptional repression exerted by Wnt/TCF7L1 promotes PE differentiation of mESCs and in preimplantation inner cell mass. Time-series RNA sequencing and promoter occupancy data reveal that TCF7L1 binds and represses genes encoding essential naive pluripotency factors and indispensable regulators of the formative pluripotency program, including Otx2 and Lef1. Consequently, TCF7L1 promotes pluripotency exit and suppresses epiblast lineage formation, thereby driving cells into PE specification. Conversely, TCF7L1 is required for PE specification as deletion of Tcf7l1 abrogates PE differentiation without restraining epiblast priming. Taken together, our study underscores the importance of transcriptional Wnt inhibition in regulating lineage specification in ESCs and preimplantation embryo development as well as identifies TCF7L1 as key regulator of this process.


Assuntos
Condução de Veículo , Endoderma , Proteína 1 Semelhante ao Fator 7 de Transcrição , Animais , Feminino , Camundongos , Gravidez , Blastocisto , Diferenciação Celular , Camadas Germinativas
5.
Proc Natl Acad Sci U S A ; 119(12): e2122708119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35298333

RESUMO

SignificanceHatching from the zona pellucida is a prerequisite for embryo implantation and is less likely to occur in vitro for reasons unknown. Extracellular vesicles (EVs) are secreted by the embryo into the culture medium. Yet the role that embryonic EVs and their cargo microRNAs (miRNAs) play in blastocyst hatching has not been elucidated, partially due to the difficulties of isolating them from low amounts of culture medium. Here, we optimized EV-miRNA isolation from medium conditioned by individually cultured bovine embryos and subsequently showed that miR-378a-3p, which was up-regulated in EVs secreted by blastocysts, plays a crucial role in promoting blastocyst hatching. This demonstrates the regulatory effect of miR-378-3p on hatching, which is an established embryo quality parameter linked with implantation.


Assuntos
Vesículas Extracelulares , MicroRNAs , Animais , Blastocisto , Bovinos , Meios de Cultura , Técnicas de Cultura Embrionária , Embrião de Mamíferos , Vesículas Extracelulares/genética , MicroRNAs/genética
6.
J Assist Reprod Genet ; 39(3): 609-618, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35064435

RESUMO

PURPOSE: Providing additional insights on the efficacy of human nuclear transfer (NT). Here, and earlier, NT has been applied to minimize transmission risk of mitochondrial DNA (mtDNA) diseases. NT has also been proposed for treating infertility, but it is still unclear which infertility indications would benefit. In this work, we therefore additionally assess the applicability of NT to overcome failed fertilization. METHODS: Patient 1 carries a homoplasmic mtDNA mutation (m.11778G > A). Seventeen metaphase II (MII) oocytes underwent pre-implantation genetic testing (PGT), while five MII oocytes were used for spindle transfer (ST), and one in vitro matured (IVM) metaphase I oocyte underwent early pronuclear transfer (ePNT). Patients 2-3 experienced multiple failed intracytoplasmic sperm injection (ICSI) and ICSI-assisted oocyte activation (AOA) cycles. For these patients, the obtained MII oocytes underwent an additional ICSI-AOA cycle, while the IVM oocytes were subjected to ST. RESULTS: For patient 1, PGT-M confirmed mutation loads close to 100%. All ST-reconstructed oocytes fertilized and cleaved, of which one progressed to the blastocyst stage. The reconstructed ePNT-zygote reached the morula stage. These samples showed an average mtDNA carry-over rate of 2.9% ± 0.8%, confirming the feasibility of NT to reduce mtDNA transmission. For patient 2-3 displaying fertilization failure, ST resulted in, respectively, 4/5 and 6/6 fertilized oocytes, providing evidence, for the first time, that NT can enable successful fertilization in this patient population. CONCLUSION: Our study showcases the repertoire of disorders for which NT can be beneficial, to overcome either mitochondrial disease transmission or failed fertilization after ICSI-AOA.


Assuntos
Infertilidade , Doenças Mitocondriais , DNA Mitocondrial/genética , Fertilização , Fertilização in vitro/métodos , Humanos , Infertilidade/genética , Infertilidade/terapia , Oócitos , Injeções de Esperma Intracitoplásmicas
7.
Cells ; 10(5)2021 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-34065661

RESUMO

The second trimester of human development is marked by asynchronous gonadal development hampering the isolation of homogenous populations of early and late fetal germ cells (FGCs). We evaluated the feasibility of using surface markers TNAP, PDPN, EPCAM and ITGA6 to isolate FGCs as well as human primordial germ cell-like cells (hPGCLCs) derived from embryonic stem cells (hESCs) from both sexes by fluorescence-activated cell sorting (FACS). Our results suggest that a combination of TNAP and PDPN was sufficient to separate populations of premeiotic FGCs and hPGCLCs in both sexes. This combination of antibodies also proved efficient in separating 'mitotic' from 'retinoic-acid responsive' female FGCs. Furthermore, we report that the differentiation efficiency of TNAP+PDPN+ hPGCLCs from hESCs was sex-independent, but the ability to propagate differed considerably between the sexes. In contrast to male, female hPGCLCs retained their characteristics and exhibited robust colony-forming ability when cultured for five days in medium containing LIF, forskolin and FGF2. We conclude that marked sex differences exist in the isolation and propagation of human FGCs and hPGCLCs. Our study provides novel insights relevant for the optimization of in vitro gametogenesis in humans.


Assuntos
Gametogênese , Técnicas de Cultura de Células , Feminino , Feto , Gônadas , Células-Tronco Embrionárias Humanas , Humanos , Masculino
8.
Clin Chem ; 67(7): 968-976, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33822904

RESUMO

BACKGROUND: The quantification of mitochondrial DNA heteroplasmy for the diagnosis of mitochondrial disease or after mitochondrial donation, is performed mainly using next-generation sequencing strategies (NGS). Digital PCR (dPCR) has the potential to offer an accurate alternative for mutation load quantification. METHODS: We assessed the mutation load of 23 low-input human samples at the m.11778 locus, which is associated with Leber's hereditary optic neuropathy (LHON) using 2 droplet digital PCR platforms (Stilla Naica and Bio-Rad QX200) and the standard NGS strategy. Assay validation was performed by analyzing a titration series with mutation loads ranging from 50% to 0.01%. RESULTS: A good concordance in mutation rates was observed between both dPCR techniques and NGS. dPCR established a distinctly lower level of background noise compared to NGS. Minor alleles with mutation loads lower than 1% could still be detected, with standard deviations of the technical replicates varying between 0.07% and 0.44% mutation load. Although no significant systematic bias was observed when comparing dPCR and NGS, a minor proportional bias was detected. A slight overestimation of the minor allele was observed for the NGS data, most probably due to amplification and sequencing errors in the NGS workflow. CONCLUSION: dPCR has proven to be an accurate tool for the quantification of mitochondrial heteroplasmy, even for samples harboring a low mutation load (<1%). In addition, this alternative technique holds multiple benefits compared to NGS (e.g., less hands-on time, more straightforward data-analysis, and a lower up-front capital investment).


Assuntos
DNA Mitocondrial , Sequenciamento de Nucleotídeos em Larga Escala , DNA Mitocondrial/genética , Fertilização in vitro , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação , Reação em Cadeia da Polimerase/métodos
9.
Front Endocrinol (Lausanne) ; 12: 635370, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33692760

RESUMO

Diminished ovarian reserve (DOR) is associated with a reduced quantity and quality of the retrieved oocytes, usually leading to poor reproductive outcomes which remain a great challenge for assisted reproduction technology (ART). Women with DOR often have to seek for oocyte donation, precluding genetically related offspring. Germline nuclear transfer (NT) is a novel technology in ART that involves the transfer of the nuclear genome from an affected oocyte/zygote of the patient to the cytoplast of an enucleated donor oocyte/zygote. Therefore, it offers opportunities for the generation of genetically related embryos. Currently, although NT is clinically applied only in women with serious mitochondrial DNA disorders, this technology has also been proposed to overcome certain forms of female infertility, such as advanced maternal age and embryo developmental arrest. In this review, we are proposing the NT technology as a future treatment option for DOR patients. Strikingly, the application of different NT strategies will result in an increase of the total number of available reconstituted embryos for DOR patients.


Assuntos
Técnicas de Transferência Nuclear , Oócitos/citologia , Reserva Ovariana , Animais , Feminino , Fertilização , Fertilização in vitro , Humanos , Infertilidade Feminina/terapia , Masculino , Idade Materna , Doenças Mitocondriais/metabolismo , Doação de Oócitos , Recuperação de Oócitos , Oócitos/metabolismo , Doenças Ovarianas , Gravidez , Técnicas de Reprodução Assistida , Fuso Acromático , Zigoto/metabolismo
10.
Nat Commun ; 12(1): 1286, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627650

RESUMO

DNA methylation (5mC) is central to cellular identity. The global erasure of 5mC from the parental genomes during preimplantation mammalian development is critical to reset the methylome of gametes to the cells in the blastocyst. While active and passive modes of demethylation have both been suggested to play a role in this process, the relative contribution of these two mechanisms to 5mC erasure remains unclear. Here, we report a single-cell method (scMspJI-seq) that enables strand-specific quantification of 5mC, allowing us to systematically probe the dynamics of global demethylation. When applied to mouse embryonic stem cells, we identified substantial cell-to-cell strand-specific 5mC heterogeneity, with a small group of cells displaying asymmetric levels of 5mCpG between the two DNA strands of a chromosome suggesting loss of maintenance methylation. Next, in preimplantation mouse embryos, we discovered that methylation maintenance is active till the 16-cell stage followed by passive demethylation in a fraction of cells within the early blastocyst at the 32-cell stage of development. Finally, human preimplantation embryos qualitatively show temporally delayed yet similar demethylation dynamics as mouse embryos. Collectively, these results demonstrate that scMspJI-seq is a sensitive and cost-effective method to map the strand-specific genome-wide patterns of 5mC in single cells.


Assuntos
Desmetilação do DNA , Metilação de DNA/fisiologia , Animais , Blastocisto/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/deficiência , DNA (Citosina-5-)-Metiltransferase 1/genética , Metilação de DNA/genética , Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Humanos , Camundongos , Camundongos Knockout , Gravidez
11.
Stem Cells ; 39(5): 551-563, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33470497

RESUMO

Protocols for specifying human primordial germ cell-like cells (hPGCLCs) from human embryonic stem cells (hESCs) remain hindered by differences between hESC lines, their derivation methods, and maintenance culture conditions. This poses significant challenges for establishing reproducible in vitro models of human gametogenesis. Here, we investigated the influence of activin A (ActA) during derivation and maintenance on the propensity of hESCs to differentiate into PGCLCs. We show that continuous ActA supplementation during hESC derivation (from blastocyst until the formation of the post-inner cell mass intermediate [PICMI]) and supplementation (from the first passage of the PICMI onwards) is beneficial to differentiate hESCs to PGCLCs subsequently. Moreover, comparing isogenic primed and naïve states prior to differentiation, we showed that conversion of hESCs to the 4i-state improves differentiation to (TNAP [tissue nonspecific alkaline phosphatase]+/PDPN [podoplanin]+) PGCLCs. Those PGCLCs expressed several germ cell markers, including TFAP2C (transcription factor AP-2 gamma), SOX17 (SRY-box transcription factor 17), and NANOS3 (nanos C2HC-type zinc finger 3), and markers associated with germ cell migration, CXCR4 (C-X-C motif chemokine receptor 4), LAMA4 (laminin subunit alpha 4), ITGA6 (integrin subunit alpha 6), and CDH4 (cadherin 4), suggesting that the large numbers of PGCLCs obtained may be suitable to differentiate further into more mature germ cells. Finally, hESCs derived in the presence of ActA showed higher competence to differentiate to hPGCLC, in particular if transiently converted to the 4i-state. Our work provides insights into the differences in differentiation propensity of hESCs and delivers an optimized protocol to support efficient human germ cell derivation.


Assuntos
Ativinas/genética , Diferenciação Celular/genética , Células Germinativas/citologia , Células-Tronco Embrionárias Humanas/citologia , Blastocisto/citologia , Caderinas/genética , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Germinativas/crescimento & desenvolvimento , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Integrina alfa6/genética , Laminina/genética , Proteínas de Ligação a RNA/genética , Receptores CXCR4/genética , Fatores de Transcrição SOXF/genética , Transdução de Sinais/genética , Fator de Transcrição AP-2/genética
12.
Genes Chromosomes Cancer ; 60(4): 272-281, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33336840

RESUMO

Human embryonic stem cells (hESCs) and embryonal tumors share a number of common features, including a compromised G1/S checkpoint. Consequently, these rapidly dividing hESCs and cancer cells undergo elevated levels of replicative stress, inducing genomic instability that drives chromosomal imbalances. In this context, it is of interest that long-term in vitro cultured hESCs exhibit a remarkable high incidence of segmental DNA copy number gains, some of which are also highly recurrent in certain malignancies such as 17q gain (17q+). The selective advantage of DNA copy number changes in these cells has been attributed to several underlying processes including enhanced proliferation. We hypothesized that these recurrent chromosomal imbalances become rapidly embedded in the cultured hESCs through a replicative stress driven Darwinian selection process. To this end, we compared the effect of hydroxyurea-induced replicative stress vs normal growth conditions in an equally mixed cell population of isogenic euploid and 17q + hESCs. We could show that 17q + hESCs rapidly overtook normal hESCs. Our data suggest that recurrent chromosomal segmental gains provide a proliferative advantage to hESCs under increased replicative stress, a process that may also explain the highly recurrent nature of certain imbalances in cancer.


Assuntos
Divisão Celular , Aberrações Cromossômicas , Células-Tronco Embrionárias Humanas/citologia , Seleção Genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Cromossomos Humanos Par 17 , Variações do Número de Cópias de DNA , Humanos , Hidroxiureia , Estresse Fisiológico , Transcriptoma
13.
J Clin Med ; 9(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271815

RESUMO

Infertility affects approximately 15% of reproductive-aged couples worldwide, of which up to 30% of the cases are caused by male factors alone. The origin of male infertility is mostly attributed to sperm abnormalities, of which many are caused by genetic defects. The development of intracytoplasmic sperm injection (ICSI) has helped to circumvent most male infertility conditions. However, there is still a challenging group of infertile males whose sperm, although having normal sperm parameters, are unable to activate the oocyte, even after ICSI treatment. While ICSI generally allows fertilization rates of 70 to 80%, total fertilization failure (FF) still occurs in 1 to 3% of ICSI cycles. Phospholipase C zeta (PLCζ) has been demonstrated to be a critical sperm oocyte activating factor (SOAF) and the absence, reduced, or altered forms of PLCζ have been shown to cause male infertility-related FF. The purpose of this review is to (i) summarize the current knowledge on PLCζ as the critical sperm factor for successful fertilization, as well as to discuss the existence of alternative sperm-induced oocyte activation mechanisms, (ii) describe the diagnostic tests available to determine the cause of FF, and (iii) summarize the beneficial effect of assisted oocyte activation (AOA) to overcome FF.

14.
Pharmacogenomics ; 21(15): 1073-1084, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33019866

RESUMO

Aim: This study provides clinicians and researchers with an informed choice between current commercially available targeted sequencing panels and exome sequencing panels in the context of pan-cancer pharmacogenetics. Materials & methods: Nine contemporary commercially available targeted pan-cancer panels and the xGen Exome Research Panel v2 were investigated to determine to what extent they cover the pharmacogenetic variant-drug interactions in five available cancer knowledgebases, and the driver mutations and fusion genes in the Cancer Genome Atlas. Results: xGen Exome Research Panel v2 and TrueSight Oncology 500 target 71.0 and 68.9% of the pharmacogenetic interactions in the available knowledgebases; and 93.7 and 86.0% of the driver mutations in the Cancer Genome Atlas, respectively. All other studied panels target lower percentages. Conclusion: Exome sequencing outperforms pan-cancer targeted sequencing panels in terms of covered cancer pharmacogenetic variant-drug interactions and pharmacogenetic cancer variants.


Assuntos
Bases de Dados Genéticas , Sequenciamento do Exoma/métodos , Exoma/genética , Neoplasias/genética , Farmacogenética/métodos , Antineoplásicos/efeitos adversos , Variação Genética/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Neoplasias/tratamento farmacológico , Testes Farmacogenômicos/métodos
15.
Hum Reprod Update ; 26(6): 779-798, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32712668

RESUMO

BACKGROUND: Studying the human peri-implantation period remains hindered by the limited accessibility of the in vivo environment and scarcity of research material. As such, continuing efforts have been directed towards developing embryo-like structures (ELS) from pluripotent stem cells (PSCs) that recapitulate aspects of embryogenesis in vitro. While the creation of such models offers immense potential for studying fundamental processes in both pre- and early post-implantation development, it also proves ethically contentious due to wide-ranging views on the moral and legal reverence due to human embryos. Lack of clarity on how to qualify and regulate research with ELS thus presents a challenge in that it may either limit this new field of research without valid grounds or allow it to develop without policies that reflect justified ethical concerns. OBJECTIVE AND RATIONALE: The aim of this article is to provide a comprehensive overview of the existing scientific approaches to generate ELS from mouse and human PSCs, as well as discuss future strategies towards innovation in the context of human development. Concurrently, we aim to set the agenda for the ethical and policy issues surrounding research on human ELS. SEARCH METHODS: The PubMed database was used to search peer-reviewed articles and reviews using the following terms: 'stem cells', 'pluripotency', 'implantation', 'preimplantation', 'post-implantation', 'blastocyst', 'embryoid bodies', 'synthetic embryos', 'embryo models', 'self-assembly', 'human embryo-like structures', 'artificial embryos' in combination with other keywords related to the subject area. The PubMed and Web of Science databases were also used to systematically search publications on the ethics of ELS and human embryo research by using the aforementioned keywords in combination with 'ethics', 'law', 'regulation' and equivalent terms. All relevant publications until December 2019 were critically evaluated and discussed. OUTCOMES: In vitro systems provide a promising way forward for uncovering early human development. Current platforms utilize PSCs in both two- and three-dimensional settings to mimic various early developmental stages, including epiblast, trophoblast and amniotic cavity formation, in addition to axis development and gastrulation. Nevertheless, much hinges on the term 'embryo-like'. Extension of traditional embryo frameworks to research with ELS reveals that (i) current embryo definitions require reconsideration, (ii) cellular convertibility challenges the attribution of moral standing on the basis of 'active potentiality' and (iii) meaningful application of embryo protective directives will require rethinking of the 14-day culture limit and moral weight attributed to (non-)viability. Many conceptual and normative (dis)similarities between ELS and embryos thus remain to be thoroughly elucidated. WIDER IMPLICATIONS: Modelling embryogenesis holds vast potential for both human developmental biology and understanding various etiologies associated with infertility. To date, ELS have been shown to recapitulate several aspects of peri-implantation development, but critically, cannot develop into a fetus. Yet, concurrent to scientific innovation, considering the extent to which the use of ELS may raise moral concerns typical of human embryo research remains paramount. This will be crucial for harnessing the potential of ELS as a valuable research tool, whilst remaining within a robust moral and legal framework of professionally acceptable practices.


Assuntos
Pesquisas com Embriões/ética , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário/fisiologia , Modelos Biológicos , Política Pública , Animais , Implantação do Embrião/fisiologia , Pesquisas com Embriões/legislação & jurisprudência , Humanos , Camundongos , Princípios Morais
17.
Hum Reprod Update ; 26(3): 313-334, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32141501

RESUMO

BACKGROUND: Trophectoderm (TE) biopsy and next generation sequencing (NGS) are currently the preferred techniques for preimplantation genetic testing for aneuploidies (PGT-A). Although this approach delivered important improvements over previous testing strategies, increased sensitivity has also prompted a rise in diagnoses of uncertain clinical significance. This includes reports of chromosomal mosaicism, suggesting the presence of karyotypically distinct cells within a single TE biopsy. Given that PGT-A relies on the chromosomal constitution of the biopsied cells being representative of the entire embryo, the prevalence and clinical implications of blastocyst mosaicism continue to generate considerable controversy. OBJECTIVE AND RATIONALE: The objective of this review was to evaluate existing scientific evidence regarding the prevalence and impact of chromosomal mosaicism in human blastocysts. We discuss insights from a biological, technical and clinical perspective to examine the implications of this diagnostic dilemma for PGT-A. SEARCH METHODS: The PubMed and Google Scholar databases were used to search peer-reviewed publications using the following terms: 'chromosomal mosaicism', 'human', 'embryo', 'blastocyst', 'implantation', 'next generation sequencing' and 'clinical management' in combination with other keywords related to the subject area. Relevant articles in the English language, published until October 2019 were critically discussed. OUTCOMES: Chromosomal mosaicism predominately results from errors in mitosis following fertilization. Although it appears to be less pervasive at later developmental stages, establishing the true prevalence of mosaicism in human blastocysts remains exceedingly challenging. In a clinical context, blastocyst mosaicism can only be reported based on a single TE biopsy and has been ascribed to 2-13% of embryos tested using NGS. Conversely, data from NGS studies disaggregating whole embryos suggests that mosaicism may be present in up to ~50% of blastocysts. However, differences in testing and reporting strategies, analysis platforms and the number of cells sampled inherently overshadow current data, while added uncertainties emanate from technical artefacts. Moreover, laboratory factors and aspects of in vitro culture generate further variability. Outcome data following the transfer of blastocysts diagnosed as mosaic remain limited. Current studies suggest that the transfer of putative mosaic embryos may lead to healthy live births, but also results in significantly reduced ongoing pregnancy rates compared to the transfer of euploid blastocysts. Observations that a subset of mosaic blastocysts has the capacity to develop normally have sparked discussions regarding the ability of embryos to self-correct. However, there is currently no direct evidence to support this assumption. Nevertheless, the exclusion of mosaic blastocysts results in fewer embryos available for transfer, which may inevitably compromise treatment outcomes. WIDER IMPLICATIONS: Chromosomal mosaicism in human blastocysts remains a perpetual diagnostic and clinical dilemma in the context of PGT-A. This review offers an important scientific resource, informing about the challenges, risks and value of diagnosing mosaicism. Elucidating these uncertainties will ultimately pave the way towards improved clinical and patient management.


Assuntos
Aneuploidia , Blastocisto/citologia , Testes Genéticos/métodos , Mosaicismo/embriologia , Diagnóstico Pré-Implantação/métodos , Diagnóstico Pré-Natal/métodos , Biópsia/métodos , Implantação do Embrião , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Cariotipagem , Gravidez , Taxa de Gravidez
18.
Reprod Biomed Online ; 40(1): 13-25, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31740224

RESUMO

RESEARCH QUESTION: To what extent does vitrification affect the Ca2+-releasing and activation potential of mouse oocytes, which are commonly used to determine the oocyte activation potential of human spermatozoa? DESIGN: The effect of mouse oocyte vitrification on Ca2+ dynamics and developmental competence after oocyte activation was assessed and compared with fresh mouse oocytes. Moreover, the Ca2+ store content of the endoplasmic reticulum was determined at different time points during the vitrification-warming procedure. Finally, the Ca2+ pattern induced by cryoprotectant exposure was determined. RESULTS: After human sperm injection into mouse oocytes, Ca2+ dynamics but not fertilization rates were significantly altered by vitrification warming (P < 0.05). Ca2+ dynamics in response to SrCl2 or ionomycin were also altered by oocyte vitrification. In contrast, activation and blastocyst rates after SrCl2 exposure were not affected (P > 0.05), whereas activation rates after ionomycin exposure were significantly lower in vitrified-warmed oocytes (P < 0.05); blastocyst rates were not affected (P > 0.05). Cryoprotectant exposure was associated with a strong drop in endoplasmic reticulum Ca2+ store content. Oocytes rapidly recovered during warming and recovery in Ca2+-containing media; a threshold area under the curve of Ca2+ dynamics to obtain activation rates above 90% was determined. CONCLUSIONS: Vitrified-warmed mouse oocytes display reduced Ca2+-releasing potential upon oocyte activation, caused by cryoprotectant exposure. With adapted classification criteria, these oocytes could be used for diagnosing oocyte activation deficiencies in patients. Evaluating the Ca2+-signalling machinery in vitrified-warmed human oocytes is required.


Assuntos
Cálcio/metabolismo , Oócitos/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Técnicas de Maturação in Vitro de Oócitos , Camundongos , Indução da Ovulação , Vitrificação
19.
Sci Rep ; 9(1): 17240, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754138

RESUMO

Recent progress has enabled the conversion of primed human embryonic stem cells (hESCs) to the naive state of pluripotency, resembling the well-characterized naive mouse ESCs (mESCs). However, a thorough histone epigenetic characterization of this conversion process is currently lacking, while its likeness to the mouse model has not been clearly established. Here, we profile the histone epigenome of hESCs during conversion in a time-resolved experimental design, using an untargeted mass spectrometry-based approach. In total, 23 histone post-translational modifications (hPTMs) changed significantly over time. H3K27Me3 was the most prominently increasing marker hPTM in naive hESCs. This is in line with previous reports in mouse, prompting us to compare all the shared hPTM fold changes between mouse and human, revealing a set of conserved hPTM markers for the naive state. Principally, we present the first roadmap of the changing human histone epigenome during the conversion of hESCs from the primed to the naive state. This further revealed similarities with mouse, which hint at a conserved mammalian epigenetic signature of the ground state of pluripotency.


Assuntos
Biomarcadores/metabolismo , Histonas/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Epigenoma/fisiologia , Humanos , Camundongos , Células-Tronco Pluripotentes/metabolismo , Transdução de Sinais/fisiologia
20.
In Vitro Cell Dev Biol Anim ; 55(10): 777-783, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31664691

RESUMO

Human pluripotent stem cells (hPSCs) are conventionally maintained on mouse embryonic fibroblast (MEF) feeder layers. However, downstream applications, such as directed differentiation protocols, are primarily optimized for feeder-free cultures. Therefore, hPSCs must often be adapted to feeder-free conditions. Here we propose a novel feeder-free adaptation protocol using StemFlex medium, which can be directly applied to thawed hPSC lines.The direct feeder-free adaptation protocol using StemFlex culture medium on Geltrex coating led to robust hPSC cultures in approximately 2 weeks. This approach was tested with three human embryonic stem cell (hESC) lines. All lines were confirmed to be pluripotent, expressing POU5F1, SOX2, and NANOG. No chromosomal imbalances were induced by the feeder-free adaptation.StemFlex medium enabled the efficient adaptation of hPSCs to feeder-free conditions directly after thawing. This protocol is easy to implement in laboratories that perform feeder-free cultures, allowing more convenient adaptation and more robust expansion of cryopreserved hPSCs, even in cases when sample quality is low or unknown.


Assuntos
Técnicas de Cultura de Células/métodos , Criopreservação , Meios de Cultura/farmacologia , Células-Tronco Pluripotentes/citologia , Animais , Biomarcadores/metabolismo , Células Cultivadas , Células Alimentadoras , Expressão Gênica , Humanos , Camundongos , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...