Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 21(1): 184, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667308

RESUMO

BACKGROUND: Monogenetic inborn errors of metabolism cause a wide phenotypic heterogeneity that may even differ between family members carrying the same genetic variant. Computational modelling of metabolic networks may identify putative sources of this inter-patient heterogeneity. Here, we mainly focus on medium-chain acyl-CoA dehydrogenase deficiency (MCADD), the most common inborn error of the mitochondrial fatty acid oxidation (mFAO). It is an enigma why some MCADD patients-if untreated-are at risk to develop severe metabolic decompensations, whereas others remain asymptomatic throughout life. We hypothesised that an ability to maintain an increased free mitochondrial CoA (CoASH) and pathway flux might distinguish asymptomatic from symptomatic patients. RESULTS: We built and experimentally validated, for the first time, a kinetic model of the human liver mFAO. Metabolites were partitioned according to their water solubility between the bulk aqueous matrix and the inner membrane. Enzymes are also either membrane-bound or in the matrix. This metabolite partitioning is a novel model attribute and improved predictions. MCADD substantially reduced pathway flux and CoASH, the latter due to the sequestration of CoA as medium-chain acyl-CoA esters. Analysis of urine from MCADD patients obtained during a metabolic decompensation showed an accumulation of medium- and short-chain acylcarnitines, just like the acyl-CoA pool in the MCADD model. The model suggested some rescues that increased flux and CoASH, notably increasing short-chain acyl-CoA dehydrogenase (SCAD) levels. Proteome analysis of MCADD patient-derived fibroblasts indeed revealed elevated levels of SCAD in a patient with a clinically asymptomatic state. This is a rescue for MCADD that has not been explored before. Personalised models based on these proteomics data confirmed an increased pathway flux and CoASH in the model of an asymptomatic patient compared to those of symptomatic MCADD patients. CONCLUSIONS: We present a detailed, validated kinetic model of mFAO in human liver, with solubility-dependent metabolite partitioning. Personalised modelling of individual patients provides a novel explanation for phenotypic heterogeneity among MCADD patients. Further development of personalised metabolic models is a promising direction to improve individualised risk assessment, management and monitoring for inborn errors of metabolism.


Assuntos
Erros Inatos do Metabolismo Lipídico , Metabolismo dos Lipídeos , Humanos , Acil-CoA Desidrogenase/genética , Coenzima A , Erros Inatos do Metabolismo Lipídico/genética
2.
J Inherit Metab Dis ; 45(4): 769-781, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35279850

RESUMO

Congenital disorders of glycosylation type 1 (CDG-I) comprise a group of 27 genetic defects with heterogeneous multisystem phenotype, mostly presenting with nonspecific neurological symptoms. The biochemical hallmark of CDG-I is a partial absence of complete N-glycans on transferrin. However, recent findings of a diagnostic N-tetrasaccharide for ALG1-CDG and increased high-mannose N-glycans for a few other CDG suggested the potential of glycan structural analysis for CDG-I gene discovery. We analyzed the relative abundance of total plasma N-glycans by high resolution quadrupole time-of-flight mass spectrometry in a large cohort of 111 CDG-I patients with known (n = 75) or unsolved (n = 36) genetic cause. We designed single-molecule molecular inversion probes (smMIPs) for sequencing of CDG-I candidate genes on the basis of specific N-glycan signatures. Glycomics profiling in patients with known defects revealed novel features such as the N-tetrasaccharide in ALG2-CDG patients and a novel fucosylated N-pentasaccharide as specific glycomarker for ALG1-CDG. Moreover, group-specific high-mannose N-glycan signatures were found in ALG3-, ALG9-, ALG11-, ALG12-, RFT1-, SRD5A3-, DOLK-, DPM1-, DPM3-, MPDU1-, ALG13-CDG, and hereditary fructose intolerance. Further differential analysis revealed high-mannose profiles, characteristic for ALG12- and ALG9-CDG. Prediction of candidate genes by glycomics profiling in 36 patients with thus far unsolved CDG-I and subsequent smMIPs sequencing led to a yield of solved cases of 78% (28/36). Combined plasma glycomics profiling and targeted smMIPs sequencing of candidate genes is a powerful approach to identify causative mutations in CDG-I patient cohorts.


Assuntos
Defeitos Congênitos da Glicosilação , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética , Glicômica , Glicosilação , Humanos , Manose , Manosiltransferases/genética , N-Acetilglucosaminiltransferases , Oligossacarídeos , Polissacarídeos/genética
3.
J Med Genet ; 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28794131

RESUMO

BACKGROUND: Autosomal recessive mutations in DNAJC12, encoding a cochaperone of HSP70 with hitherto unknown function, were recently described to lead to hyperphenylalaninemia, central monoamine neurotransmitter (dopamine and serotonin) deficiency, dystonia and intellectual disability in six subjects affected by homozygous variants. OBJECTIVE: Patients exhibiting hyperphenylalaninemia in whom deficiencies in hepatic phenylalanine hydroxylase and tetrahydrobiopterin cofactor metabolism had been excluded were subsequently analysed for DNAJC12 variants. METHODS: To analyse DNAJC12, genomic DNA from peripheral blood (Sanger sequencing), as well as quantitative messenger RNA (Real Time Quantitative Polymerase Chain Reaction (RT-qPCR)) and protein expression (Western blot) from primary skin fibroblasts were performed. RESULTS: We describe five additional patients from three unrelated families with homozygosity/compound heterozygosity in DNAJC12 with three novel variants: c.85delC/p.Gln29Lysfs*38, c.596G>T/p.*199Leuext*42 and c.214C>T/p.(Arg72*). In contrast to previously reported DNAJC12-deficient patients, all five cases showed a very mild neurological phenotype. In two subjects, cerebrospinal fluid and primary skin fibroblasts were analysed showing similarly low 5-hydroxyindolacetic acid and homovanillic acid concentrations but more reduced expressions of mRNA and DNAJC12 compared with previously described patients. All patients responded to tetrahydrobiopterin challenge by lowering blood phenylalanine levels. CONCLUSIONS: DNAJC12 deficiency appears to result in a more heterogeneous neurological phenotype than originally described. While early identification and institution of treatment with tetrahydrobiopterin and neurotransmitter precursors is crucial to ensure optimal neurological outcome in DNAJC12-deficient patients with a severe phenotype, optimal treatment for patients with a milder phenotype remains to be defined.

4.
Pediatrics ; 130(4): e1005-10, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22987873

RESUMO

Molybdenum cofactor deficiency (MoCD) is a lethal autosomal recessive inborn error of metabolism with devastating neurologic manifestations. Currently, experimental treatment with cyclic pyranopterin monophosphate (cPMP) is available for patients with MoCD type A caused by a mutation in the MOCS-1 gene. Here we report the first case of an infant, prenatally diagnosed with MoCD type A, whom we started on treatment with cPMP 4 hours after birth. The most reliable method to evaluate neurologic functioning in early infancy is to assess the quality of general movements (GMs) and fidgety movements (FMs). After a brief period of seizures and cramped-synchronized GMs on the first day, our patient showed no further clinical signs of neurologic deterioration. Her quality of GMs was normal by the end of the first week. Rapid improvement of GM quality together with normal FMs at 3 months is highly predictive of normal neurologic outcome. We demonstrated that a daily cPMP dose of even 80 µg/kg in the first 12 days reduced the effects of neurodegenerative damage even when seizures and cramped-synchronized GMs were already present. We strongly recommend starting cPMP treatment as soon as possible after birth in infants diagnosed with MoCD type A.


Assuntos
Erros Inatos do Metabolismo dos Metais/tratamento farmacológico , Compostos Organofosforados/uso terapêutico , Pterinas/uso terapêutico , Discinesias/diagnóstico , Discinesias/etiologia , Eletroencefalografia , Feminino , Humanos , Recém-Nascido , Erros Inatos do Metabolismo dos Metais/complicações , Erros Inatos do Metabolismo dos Metais/diagnóstico , Molibdoferredoxina , Gravidez , Diagnóstico Pré-Natal , Convulsões/diagnóstico , Convulsões/etiologia , Gravação em Vídeo
5.
Ann Clin Biochem ; 49(Pt 2): 184-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22302152

RESUMO

BACKGROUND: Vitamin B(12) deficiency occurs frequently, especially among the elderly. However, screening for vitamin B(12) deficiency is hampered by poor sensitivity of the existing total vitamin B(12) assay. Methylmalonic acid (MMA) is considered as the most representative indicator of metabolic vitamin B(12) deficiency and is used as such in this study. The aim of this study was to validate the clinical usefulness of holotranscobalamin (holoTC) as an initial screening assay for metabolic vitamin B(12) deficiency in a mixed patient population. METHODS: Three hundred and sixty blood samples were collected by five Dutch hospitals. Vitamin B(12) and holoTC in serum were measured (AxSYM; Abbott). MMA in serum was measured by tandem mass spectrometry (LC-MS/MS). RESULTS: Receiver operating curve (ROC) analysis demonstrated a greater area under the curve (AUC) for holoTC than for vitamin B(12) in detecting vitamin B(12) deficiency characterized by three predefined cut-off levels of MMA. A cut-off value of 32 pmol/L of holoTC resulted in the highest sensitivity (83%) with acceptable specificity (60%) in detecting MMA concentrations above 0.45 µmol/L. The combination of vitamin B(12) and holoTC did not improve diagnostic accuracy at this cut-off level. CONCLUSIONS: HoloTC has a better diagnostic accuracy than vitamin B(12) and can replace the existing vitamin B(12) assay as a primary screening test in patients suspected of vitamin B(12) deficiency. Critical evaluation of cut-off values of holoTC indicated that a cut-off value of 32 pmol/L can be considered in screening for metabolic vitamin B(12) deficiency (defined by MMA > 0.45µmol/L) in a mixed patient population.


Assuntos
Deficiência de Vitamina B 12/diagnóstico , Vitamina B 12/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Cromatografia Líquida , Feminino , Humanos , Limite de Detecção , Masculino , Pessoa de Meia-Idade , Curva ROC , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...