Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 23(2): 159-173, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37940144

RESUMO

N-terminal processing by methionine aminopeptidases (MetAP) is a crucial step in the maturation of proteins during protein biosynthesis. Small-molecule inhibitors of MetAP2 have antiangiogenic and antitumoral activity. Herein, we characterize the structurally novel MetAP2 inhibitor M8891. M8891 is a potent, selective, reversible small-molecule inhibitor blocking the growth of human endothelial cells and differentially inhibiting cancer cell growth. A CRISPR genome-wide screen identified the tumor suppressor p53 and MetAP1/MetAP2 as determinants of resistance and sensitivity to pharmacologic MetAP2 inhibition. A newly identified substrate of MetAP2, translation elongation factor 1-alpha-1 (EF1a-1), served as a pharmacodynamic biomarker to follow target inhibition in cell and mouse studies. Robust angiogenesis and tumor growth inhibition was observed with M8891 monotherapy. In combination with VEGF receptor inhibitors, tumor stasis and regression occurred in patient-derived xenograft renal cell carcinoma models, particularly those that were p53 wild-type, had Von Hippel-Landau gene (VHL) loss-of-function mutations, and a mid/high MetAP1/2 expression score.


Assuntos
Aminopeptidases , Carcinoma de Células Renais , Neoplasias Renais , Humanos , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Células Endoteliais/metabolismo , Metaloendopeptidases/metabolismo , Inibidores Enzimáticos , Inibidores da Angiogênese/farmacologia , Neoplasias Renais/tratamento farmacológico
2.
Biosensors (Basel) ; 13(10)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37887106

RESUMO

Modern drug discovery relies on combinatorial screening campaigns to find drug molecules targeting specific disease-associated proteins. The success of such campaigns often relies on functional and structural information of the selected therapeutic target, only achievable once its purification is mastered. With the aim of bypassing the protein purification process to gain insights on the druggability, ligand binding, and/or characterization of protein-protein interactions, herein, we describe the Extract2Chip method. This approach builds on the immobilization of site-specific biotinylated proteins of interest, directly from cellular extracts, on avidin-coated sensor chips to allow for the characterization of molecular interactions via surface plasmon resonance (SPR). The developed method was initially validated using Cyclophilin D (CypD) and subsequently applied to other drug discovery projects in which the targets of interest were difficult to express, purify, and crystallize. Extract2Chip was successfully applied to the characterization of Yes-associated protein (YAP): Transcriptional enhancer factor TEF (TEAD1) protein-protein interaction inhibitors, in the validation of a ternary complex assembly composed of Dyskerin pseudouridine synthase 1 (DKC1) and RuvBL1/RuvBL2, and in the establishment of a fast-screening platform to select the most suitable NUAK family SNF1-like kinase 2 (NUAK2) surrogate for binding and structural studies. The described method paves the way for a potential revival of the many drug discovery campaigns that have failed to deliver due to the lack of suitable and sufficient protein supply.


Assuntos
Descoberta de Drogas , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , Descoberta de Drogas/métodos , Proteínas , Cromatografia de Afinidade , Ligação Proteica
3.
J Immunother Cancer ; 11(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37880183

RESUMO

BACKGROUND & AIMS: Intratumoral lactate accumulation and acidosis impair T-cell function and antitumor immunity. Interestingly, expression of the lactate transporter monocarboxylate transporter (MCT) 4, but not MCT1, turned out to be prognostic for the survival of patients with rectal cancer, indicating that single MCT4 blockade might be a promising strategy to overcome glycolysis-related therapy resistance. METHODS: To determine whether blockade of MCT4 alone is sufficient to improve the efficacy of immune checkpoint blockade (ICB) therapy, we examined the effects of the selective MCT1 inhibitor AZD3965 and a novel MCT4 inhibitor in a colorectal carcinoma (CRC) tumor spheroid model co-cultured with blood leukocytes in vitro and the MC38 murine CRC model in vivo in combination with an antibody against programmed cell death ligand-1(PD-L1). RESULTS: Inhibition of MCT4 was sufficient to reduce lactate efflux in three-dimensional (3D) CRC spheroids but not in two-dimensional cell-cultures. Co-administration of the MCT4 inhibitor and ICB augmented immune cell infiltration, T-cell function and decreased CRC spheroid viability in a 3D co-culture model of human CRC spheroids with blood leukocytes. Accordingly, combination of MCT4 and ICB increased intratumoral pH, improved leukocyte infiltration and T-cell activation, delayed tumor growth, and prolonged survival in vivo. MCT1 inhibition exerted no further beneficial impact. CONCLUSIONS: These findings demonstrate that single MCT4 inhibition represents a novel therapeutic approach to reverse lactic-acid driven immunosuppression and might be suitable to improve ICB efficacy.


Assuntos
Neoplasias Colorretais , Inibidores de Checkpoint Imunológico , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Glicólise , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores
4.
Biochem Pharmacol ; 215: 115755, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37607620

RESUMO

Induction of cytochrome P450 (CYP) genes constitutes an important cause of drug-drug interactions and preclinical evaluation of induction liability is mandatory for novel drug candidates. YAP/TEAD signaling has emerged as an attractive target for various oncological indications and multiple chemically distinct YAP/TEAD inhibitors are rapidly progressing towards clinical stages. Here, we tested the liability for CYP induction of a diverse set of YAP/TEAD inhibitors with different modes of action and TEAD isoform selectivity profiles in monolayers and 3D spheroids of primary human hepatocytes (PHH). We found that YAP/TEAD inhibition resulted in broad induction of CYPs in 2D monolayers, whereas, if at all, only marginal induction was seen in spheroid culture. Comprehensive RNA-Seq indicated that YAP/TEAD signaling was increased in 2D culture compared to spheroids, which was paralleled by elevated activities of the interacting transcription factors LXR and ESRRA, likely at least in part due to altered mechanosensing. Inhibition of this YAP/TEAD hyperactivation resulted in an overall reduction of hepatocyte dedifferentiation marked by increased hepatic functionality, including CYPs. These results thus demonstrate that the observed induction is due to on-target effects of the compounds rather than direct activation of xenobiotic sensing nuclear receptors. Combined, the presented data link hepatocyte dedifferentiation to YAP/TEAD dysregulation, reveal a novel non-canonical pathway of CYP induction and highlight the advantage of organotypic 3D cultures to predict clinically relevant pharmacokinetic properties, particularly for atypical induction mechanisms.


Assuntos
Sistema Enzimático do Citocromo P-450 , Transdução de Sinais , Humanos , Sistema Enzimático do Citocromo P-450/genética , Desdiferenciação Celular , Hepatócitos , Fatores de Transcrição
5.
J Med Chem ; 66(1): 837-854, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36516476

RESUMO

The highly conserved catalytic sites in protein kinases make it difficult to identify ATP competitive inhibitors with kinome-wide selectivity. Serendipitously, during a dedicated fragment campaign for the focal adhesion kinase (FAK), a scaffold that had lost its initial FAK affinity showed remarkable potency and selectivity for serine-arginine-protein kinases 1-3 (SRPK1-3). Non-conserved interactions with the uniquely structured hinge region of the SRPK family were the key drivers of the exclusive selectivity of the discovered fragment hit. Structure-guided medicinal chemistry efforts led to the SRPK inhibitor MSC-1186, which fulfills all hallmarks of a reversible chemical probe, including nanomolar cellular potency and excellent kinome-wide selectivity. The combination of MSC-1186 with CDC2-like kinase (CLK) inhibitors showed additive attenuation of SR-protein phosphorylation compared to the single agents. MSC-1186 and negative control (MSC-5360) are chemical probes available via the Structural Genomics Consortium chemical probe program (https://www.sgc-ffm.uni-frankfurt.de/).


Assuntos
Proteínas Serina-Treonina Quinases , Pirimidinas , Fosforilação , Pirimidinas/farmacologia , Benzimidazóis/farmacologia
6.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 7): 699-702, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35855363

RESUMO

The title compound {systematic name: rac-2-[7-methyl-4-(4-methylphenyl)-4-(phenylimino)-6,6-bis(propan-2-yl)-3-oxa-4λ6-thia-5-aza-6-silaoct-4-en-1-yl]-2,3-dihydro-1H-isoindole-1,3-dione}, C32H41N3O3SSi, was synthesized by desoxychlorination of 4-methyl-N-phenyl-N'-(triisopropyl-sil-yl)benzene-sul-fon-imid-am-ide and subsequent reaction with 2-(2-hy-droxy-eth-yl)isoindoline-1,3-dione. The racemic compound was crystallized from isopropanol. The structural characterization by single-crystal X-ray diffraction revealed two double-bonded nitro-gen atoms to the central sulfur atom and an overall crystal packing driven by its aromatic inter-actions.

7.
J Med Chem ; 65(13): 9206-9229, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35763499

RESUMO

The dysregulated Hippo pathway and, consequently, hyperactivity of the transcriptional YAP/TAZ-TEAD complexes is associated with diseases such as cancer. Prevention of YAP/TAZ-TEAD triggered gene transcription is an attractive strategy for therapeutic intervention. The deeply buried and conserved lipidation pocket (P-site) of the TEAD transcription factors is druggable. The discovery and optimization of a P-site binding fragment (1) are described. Utilizing structure-based design, enhancement in target potency was engineered into the hit, capitalizing on the established X-ray structure of TEAD1. The efforts culminated in the optimized in vivo tool MSC-4106, which exhibited desirable potency, mouse pharmacokinetic properties, and in vivo efficacy. In close correlation to compound exposure, the time- and dose-dependent downregulation of a proximal biomarker could be shown.


Assuntos
Neoplasias , Fatores de Transcrição , Animais , Camundongos , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/metabolismo
8.
J Med Chem ; 64(16): 11904-11933, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34382802

RESUMO

Due to increased lactate production during glucose metabolism, tumor cells heavily rely on efficient lactate transport to avoid intracellular lactate accumulation and acidification. Monocarboxylate transporter 4 (MCT4/SLC16A3) is a lactate transporter that plays a central role in tumor pH modulation. The discovery and optimization of a novel class of MCT4 inhibitors (hit 9a), identified by a cellular screening in MDA-MB-231, is described. Direct target interaction of the optimized compound 18n with the cytosolic domain of MCT4 was shown after solubilization of the GFP-tagged transporter by fluorescence cross-correlation spectroscopy and microscopic studies. In vitro treatment with 18n resulted in lactate efflux inhibition and reduction of cellular viability in MCT4 high expressing cells. Moreover, pharmacokinetic properties of 18n allowed assessment of lactate modulation and antitumor activity in a mouse tumor model. Thus, 18n represents a valuable tool for investigating selective MCT4 inhibition and its effect on tumor biology.


Assuntos
Antineoplásicos/uso terapêutico , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Proteínas Musculares/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Ácidos Picolínicos/uso terapêutico , Sulfonamidas/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HEK293 , Humanos , Ácido Láctico/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos SCID , Estrutura Molecular , Ácidos Picolínicos/síntese química , Ácidos Picolínicos/farmacologia , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cell Chem Biol ; 28(5): 686-698.e7, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33497606

RESUMO

There is increasing evidence of a significant correlation between prolonged drug-target residence time and increased drug efficacy. Here, we report a structural rationale for kinetic selectivity between two closely related kinases: focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (PYK2). We found that slowly dissociating FAK inhibitors induce helical structure at the DFG motif of FAK but not PYK2. Binding kinetic data, high-resolution structures and mutagenesis data support the role of hydrophobic interactions of inhibitors with the DFG-helical region, providing a structural rationale for slow dissociation rates from FAK and kinetic selectivity over PYK2. Our experimental data correlate well with computed relative residence times from molecular simulations, supporting a feasible strategy for rationally optimizing ligand residence times. We suggest that the interplay between the protein structural mobility and ligand-induced effects is a key regulator of the kinetic selectivity of inhibitors of FAK versus PYK2.


Assuntos
Quinase 1 de Adesão Focal/antagonistas & inibidores , Indóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Sulfonamidas/farmacologia , Células Cultivadas , Feminino , Quinase 1 de Adesão Focal/metabolismo , Células HEK293 , Humanos , Indóis/síntese química , Indóis/química , Cinética , Ligantes , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Sulfonamidas/síntese química , Sulfonamidas/química
10.
J Med Chem ; 62(24): 11119-11134, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31725285

RESUMO

The recently disclosed next generation of reversible, selective, and potent MetAP-2 inhibitors introduced a cyclic tartronic diamide scaffold. However, the lead compound 1a suffered from enterohepatic circulation, preventing further development. Nevertheless, 1a served as a starting point for further optimization. Maintaining potent antiproliferation activity, while improving other compound properties, enabled the generation of an attractive array of new MetAP-2 inhibitors. The most promising derivatives were identified by a multiparameter analysis of the compound properties. Essential for the efficient selection of candidates with in vivo activity was the identification of molecules with a long residence time on the target protein, high permeability, and low efflux ratio not only in Caco-2 but also in the MDR-MDCK cell line. Orally bioavailable, potent, and reversible MetAP-2 inhibitors impede the growth of primary endothelial cells and demonstrated antitumoral activity in mouse models. This assessment led to the nomination of the clinical development compound M8891, which is currently in phase I clinical testing in oncology patients.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Glioma/tratamento farmacológico , Indóis/farmacologia , Metionil Aminopeptidases/antagonistas & inibidores , Células A549 , Animais , Antineoplásicos/química , Apoptose , Células CACO-2 , Proliferação de Células , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Inibidores Enzimáticos/química , Feminino , Glioma/metabolismo , Glioma/patologia , Humanos , Indóis/química , Camundongos , Camundongos Nus , Modelos Moleculares , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Med Chem ; 62(10): 5025-5039, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-30939017

RESUMO

Co- and post-translational processing are crucial maturation steps to generate functional proteins. MetAP-2 plays an important role in this process, and inhibition of its proteolytic activity has been shown to be important for angiogenesis and tumor growth, suggesting that small-molecule inhibitors of MetAP-2 may be promising options for the treatment of cancer. This work describes the discovery and structure-based hit optimization of a novel MetAP-2 inhibitory scaffold. Of critical importance, a cyclic tartronic diamide coordinates the MetAP-2 metal ion in the active site while additional side chains of the molecule were designed to occupy the lipophilic methionine side chain recognition pocket as well as the shallow cavity at the opening of the active site. The racemic screening hit from HTS campaign 11a was discovered with an enzymatic IC50 of 150 nM. The resynthesized eutomer confirmed this activity and inhibited HUVEC proliferation with an IC50 of 1.9 µM. Its structural analysis revealed a sophisticated interaction pattern of polar and lipophilic contacts that were used to improve cellular potency to an IC50 of 15 nM. In parallel, the molecular properties were optimized on plasma exposure and antitumor efficacy which led to the identification of advanced lead 21.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Metionil Aminopeptidases/antagonistas & inibidores , Inibidores de Proteases/síntese química , Inibidores de Proteases/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Masculino , Metais/química , Metionina/química , Camundongos Nus , Conformação Molecular , Relação Estrutura-Atividade
12.
Exp Econ ; 21(2): 434-456, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29720890

RESUMO

We study prudence and temperance (next to risk aversion) in social settings. Previous experimental studies have shown that these higher-order risk preferences affect the choices of individuals deciding privately on lotteries that only affect their own payoff. Yet, many risky and financially relevant decisions are made in the social settings of households or organizations. We elicit higher-order risk preferences of individuals and systematically vary how an individual's decision is made (alone or while communicating with a partner) and who is affected by the decision (only the individual or the partner as well). In doing so, we can isolate the effects of other-regarding concerns and communication on choices. Our results reveal that the majority of choices are risk averse, prudent, and temperate across social settings. We also observe that individuals are influenced significantly by the preferences of a partner when they are able to communicate and choices are payoff-relevant for both of them.

13.
Bioorg Med Chem Lett ; 27(3): 551-556, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27998678

RESUMO

The natural product fumagillin 1 and derivatives like TNP-470 2 or beloranib 3 bind to methionine aminopeptidase 2 (MetAP-2) irreversibly. This enzyme is critical for protein maturation and plays a key role in angiogenesis. In this paper we describe the synthesis, MetAP-2 binding affinity and structural analysis of reversible MetAP-2 inhibitors. Optimization of enzymatic activity of screening hit 10 (IC50: 1µM) led to the most potent compound 27 (IC50: 0.038µM), with a concomitant improvement in LLE from 2.1 to 4.2. Structural analysis of these MetAP-2 inhibitors revealed an unprecedented conformation of the His339 side-chain imidazole ring being co-planar sandwiched between the imidazole of His331 and the aryl-ether moiety, which is bound to the purine scaffold. Systematic alteration and reduction of H-bonding capability of this metal binding moiety induced an unexpected 180° flip for the triazolo[1,5-a]pyrimdine bicyclic template.


Assuntos
Aminopeptidases/antagonistas & inibidores , Glicoproteínas/antagonistas & inibidores , Purinas/farmacologia , Pirimidinas/farmacologia , Aminopeptidases/metabolismo , Relação Dose-Resposta a Droga , Glicoproteínas/metabolismo , Humanos , Metionil Aminopeptidases , Modelos Moleculares , Estrutura Molecular , Purinas/síntese química , Purinas/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade
14.
Bioorg Med Chem Lett ; 26(13): 3073-3080, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27217002

RESUMO

A combined screening strategy using HTS together with focused kinase library and virtual screening led to the identification of diverse chemical series as PDK1 inhibitors. We focused our medicinal chemistry efforts on 7-azaindoles with low micromolar IC50s (e.g., 16: IC50=1.1µM) in the biochemical PDK1 assay. Our structure-guided optimization efforts considered also PDK1 X-ray structures with weaker binding fragments and resulted in 7-azaindoles with significantly improved biochemical PDK1 potency in the two-digit nanomolar range. However, the most potent analogues only showed moderate activities in a cellular mechanistic assay (42: IC50=2.3µM) together with either low microsomal stability or low permeability. The described structure-activity relationship together with PDK1 X-ray structures and early ADME data provided the basis for our subsequent hit-to-lead program.


Assuntos
Descoberta de Drogas , Indóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Indóis/síntese química , Indóis/química , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Relação Estrutura-Atividade
15.
Bioorg Med Chem Lett ; 23(19): 5401-9, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23973211

RESUMO

Chemically diverse fragment hits of focal adhesion kinase (FAK) were discovered by surface plasmon resonance (SPR) screening of our in-house fragment library. Site specific binding of the primary hits was confirmed in a competition setup using a high-affinity ATP-site inhibitor of FAK. Protein crystallography revealed the binding mode of 41 out of 48 selected fragment hits within the ATP-site. Structural comparison of the fragment binding modes with a DFG-out inhibitor of FAK initiated first synthetic follow-up optimization leading to improved binding affinity.


Assuntos
Descoberta de Drogas , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Indóis/química , Indóis/farmacologia , Fragmentos de Peptídeos/farmacologia , Bibliotecas de Moléculas Pequenas , Sulfonamidas/química , Sulfonamidas/farmacologia , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Concentração Inibidora 50 , Modelos Moleculares , Estrutura Molecular , Fragmentos de Peptídeos/genética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Solubilidade , Ressonância de Plasmônio de Superfície
16.
J Med Chem ; 56(3): 1160-70, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23294348

RESUMO

Focal adhesion kinase (FAK) is considered as an attractive target for oncology, and small-molecule inhibitors are reported to be in clinical testing. In a surface plasmon resonance (SPR)-mediated fragment screening campaign, we discovered bicyclic scaffolds like 1H-pyrazolo[3,4-d]pyrimidines binding to the hinge region of FAK. By an accelerated knowledge-based fragment growing approach, essential pharmacophores were added. The establishment of highly substituted unprecedented 1H-pyrrolo[2,3-b]pyridine derivatizations provided compounds with submicromolar cellular FAK inhibition potential. The combination of substituents on the bicyclic templates and the nature of the core structure itself have a significant impact on the compounds FAK selectivity. Structural analysis revealed that the appropriately substituted pyrrolo[2,3-b]pyridine induced a rare helical DFG-loop conformation. The discovered synthetic route to introduce three different substituents independently paves the way for versatile applications of the 7-azaindole core.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Piridinas/farmacologia , Cromatografia Líquida de Alta Pressão , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Moleculares , Piridinas/química
17.
ACS Med Chem Lett ; 1(5): 199-203, 2010 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-24900194

RESUMO

Targeting allosteric protein sites is a promising approach to interfere selectively with cellular signaling cascades. We have discovered a novel class of allosteric insulin-like growth factor-I receptor (IGF-1R) inhibitors. 3-Cyano-1H-indole-7-carboxylic acid {1-[4-(5-cyano-1H-indol-3-yl)butyl]piperidin-4-yl}amide (10) was found with nanomolar biochemical, micromolar, cellular IGF-1R activity and no relevant interference with cellular insulin receptor signaling up to 30 µM. The allosteric binding site was characterized by X-ray crystallographic studies, and the structural information was used to explain the unique mode of action of this new class of inhibitors.

18.
Bioorg Med Chem Lett ; 19(7): 1879-82, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19269177

RESUMO

Herein we report the syntheses of 2,3-diaryl-substituted pyrrolo[3,2-b]pyridine-5-carbonitriles via a one-pot 5-endo-dig-cyclization/protection reaction followed by palladium catalyzed arylation. In addition, a complementary synthesis route employing Larock methodology is applied to efficiently explore further aryl moieties in the 2-position. The novel compounds' expedient c-Met receptor tyrosine kinase inhibition activity is discussed.


Assuntos
Indóis/síntese química , Inibidores de Proteínas Quinases/síntese química , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Catálise , Indóis/química , Indóis/farmacologia , Concentração Inibidora 50 , Paládio/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/metabolismo
19.
ChemMedChem ; 1(2): 245-55, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16892357

RESUMO

The discovery of a novel class of highly potent and selective 5-HT2A antagonists is reported herein. Selectivity for the serotonin 5-HT2A receptor was optimized, decreasing the affinity of these antagonists toward the adrenergic alpha1 and dopaminergic D2 receptors, and especially to the 5-HT2C receptor. A series of corresponding 7-substituted indoles is described for the first time as serotonergic ligands. The enantiomer R-(+)-1-(4-fluorophenyl)-1-{1-[2-(4-fluorophenyl)ethyl]piperidin-4-yl} ethanol (R-(+)-74) was identified to have superior affinity for the serotonergic 5-HT2A receptor [IC50=0.37 nM] and selectivity toward the dopaminergic D2- [IC50=2300 nM], adrenergic alpha1- [IC50=1000 nM] and 5-HT2C receptors [IC50=490 nM].


Assuntos
Piperidinas/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina , Antagonistas da Serotonina/farmacologia , Animais , Espectroscopia de Ressonância Magnética , Masculino , Piperidinas/química , Ratos , Receptor 5-HT2A de Serotonina/química , Antagonistas da Serotonina/química , Espectrometria de Massas por Ionização por Electrospray
20.
J Am Chem Soc ; 128(12): 4023-34, 2006 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-16551111

RESUMO

The application of metalated, enantiomerically pure acyclic and cyclic 2-alkenyl sulfoximines for the synthesis of highly substituted aza(poly)cyclic ring systems is described. The method relies on a one-pot combination of a reagent-controlled allyl transfer reaction to alpha- or beta-amino aldehydes, followed by a Michael-type cyclization of the intermediate vinyl sulfoximines generated in the first step. The sulfur-free target compounds are preferentially obtained by samarium iodide treatment of the sulfonimidoyl substituted heterocycles. In addition to this methodological work, initial results on the biological activity of selected examples are reported. Furthermore, a concept for the transformation of peptidic lead structures into non-peptide mimetics is described, and the relevance of the new approach to highly substituted azaheterocycles in this context is discussed.


Assuntos
Alcenos/química , Metionina/análogos & derivados , Peptídeos/química , Compostos Policíclicos/síntese química , Aldeídos/química , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Metionina/química , Modelos Moleculares , Piperidinas/síntese química , Piperidinas/química , Compostos Policíclicos/química , Pirrolidinas/síntese química , Pirrolidinas/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...