Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6354, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816747

RESUMO

Marine viruses in seawater have frequently been studied, yet their dispersal from neuston ecosystems at the air-sea interface towards the atmosphere remains a knowledge gap. Here, we show that 6.2% of the studied virus population were shared between air-sea interface ecosystems and rainwater. Virus enrichment in the 1-mm thin surface microlayer and sea foams happened selectively, and variant analysis proved virus transfer to aerosols collected at ~2 m height above sea level and rain. Viruses detected in rain and these aerosols showed a significantly higher percent G/C base content compared to marine viruses. CRISPR spacer matches of marine prokaryotes to foreign viruses from rainwater prove regular virus-host encounters at the air-sea interface. Our findings on aerosolization, adaptations, and dispersal support transmission of viruses along the natural water cycle.


Assuntos
Ecossistema , Vírus , Ciclo Hidrológico , Água do Mar/análise , Vírus/genética , Aerossóis/análise
2.
Viruses ; 13(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451082

RESUMO

Viruses are highly abundant, diverse, and active components of marine environments. Flow cytometry has helped to increase the understanding of their impact on shaping microbial communities and biogeochemical cycles in the pelagic zone. However, to date, flow cytometric quantification of sediment viruses is still hindered by interference from the sediment matrix. Here, we developed a protocol for the enumeration of marine sediment viruses by flow cytometry based on separation of viruses from sediment particles using a Nycodenz density gradient. Results indicated that there was sufficient removal of background interference to allow for flow cytometric quantification. Applying this new protocol to deep-sea and tidal-flat samples, viral abundances enumerated by flow cytometry correlated well (R2 = 0.899) with counts assessed by epifluorescence microscopy over several orders of magnitude from marine sediments of various compositions. Further optimization may be needed for sediments with low biomass or high organic content. Overall, the new protocol enables fast and accurate quantification of marine sediment viruses, and opens up the options for virus sorting, targeted viromics, and single-virus sequencing.


Assuntos
Citometria de Fluxo/métodos , Sedimentos Geológicos/virologia , Água do Mar , Vírus , Microbiologia da Água , Fracionamento Químico , Dermoscopia , Carga Viral , Vírus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...