Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 243: 118534, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34469813

RESUMO

Recognizing the actions of others depends on segmentation into meaningful events. After decades of research in this area, it remains still unclear how humans do this and which brain areas support underlying processes. Here we show that a computer vision-based model of touching and untouching events can predict human behavior in segmenting object manipulation actions with high accuracy. Using this computational model and functional Magnetic Resonance Imaging (fMRI), we pinpoint the neural networks underlying this segmentation behavior during an implicit action observation task. Segmentation was announced by a strong increase of visual activity at touching events followed by the engagement of frontal, hippocampal and insula regions, signaling updating expectation at subsequent untouching events. Brain activity and behavior show that touching-untouching motifs are critical features for identifying the key elements of actions including object manipulations.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Tato/fisiologia , Adolescente , Adulto , Simulação por Computador , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Percepção de Movimento/fisiologia , Movimento/fisiologia , Redes Neurais de Computação , Reconhecimento Psicológico , Adulto Jovem
2.
PLoS One ; 16(7): e0253130, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34293800

RESUMO

Auditory and visual percepts are integrated even when they are not perfectly temporally aligned with each other, especially when the visual signal precedes the auditory signal. This window of temporal integration for asynchronous audiovisual stimuli is relatively well examined in the case of speech, while other natural action-induced sounds have been widely neglected. Here, we studied the detection of audiovisual asynchrony in three different whole-body actions with natural action-induced sounds-hurdling, tap dancing and drumming. In Study 1, we examined whether audiovisual asynchrony detection, assessed by a simultaneity judgment task, differs as a function of sound production intentionality. Based on previous findings, we expected that auditory and visual signals should be integrated over a wider temporal window for actions creating sounds intentionally (tap dancing), compared to actions creating sounds incidentally (hurdling). While percentages of perceived synchrony differed in the expected way, we identified two further factors, namely high event density and low rhythmicity, to induce higher synchrony ratings as well. Therefore, we systematically varied event density and rhythmicity in Study 2, this time using drumming stimuli to exert full control over these variables, and the same simultaneity judgment tasks. Results suggest that high event density leads to a bias to integrate rather than segregate auditory and visual signals, even at relatively large asynchronies. Rhythmicity had a similar, albeit weaker effect, when event density was low. Our findings demonstrate that shorter asynchronies and visual-first asynchronies lead to higher synchrony ratings of whole-body action, pointing to clear parallels with audiovisual integration in speech perception. Overconfidence in the naturally expected, that is, synchrony of sound and sight, was stronger for intentional (vs. incidental) sound production and for movements with high (vs. low) rhythmicity, presumably because both encourage predictive processes. In contrast, high event density appears to increase synchronicity judgments simply because it makes the detection of audiovisual asynchrony more difficult. More studies using real-life audiovisual stimuli with varying event densities and rhythmicities are needed to fully uncover the general mechanisms of audiovisual integration.


Assuntos
Percepção Auditiva , Dança/fisiologia , Música , Atletismo/fisiologia , Percepção Visual , Estimulação Acústica , Adulto , Dança/psicologia , Feminino , Humanos , Masculino , Música/psicologia , Estimulação Luminosa , Som , Atletismo/psicologia , Percepção Visual/fisiologia , Adulto Jovem
3.
Neuroimage ; 236: 118028, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33930538

RESUMO

Surprising scenarios can have different behavioural and neuronal consequences depending on the violation of the expectation. On the one hand, previous research has shown that the omission of a visual stimulus results in a robust cortical response representing that missing stimulus, a so-called negative prediction error. On the other hand, a large amount of studies revealed positive prediction error signals, entailing an increased neural response that can be attributed to the experience of a surprising, unexpected stimulus. However, there has been no evidence, so far, regarding how and when these prediction error signals co-occur. Here, we argue that the omission of an expected stimulus can and often does coincide with the appearance of an unexpected one. Therefore, we investigated whether positive and negative prediction error signals evoked by unpredicted cross-category stimulus transitions would temporally coincide during a speeded forced-choice fMRI paradigm. Foremost, our findings provide evidence of a behavioural effect regarding the facilitation of responses linked to expected stimuli. In addition, we obtained evidence for negative prediction error signals as seen in differential activation of FFA and PPA during unexpected place and face trials, respectively. Lastly, a psychophysiological interaction analysis revealed evidence for positive prediction error signals represented by context-dependent functional coupling between the right IFG and FFA or PPA, respectively, implicating a network that updates the internal representation after the appearance of an unexpected stimulus through involvement of this frontal area. The current results are consistent with a predictive coding account of cognition and underline the importance of considering the potential dual nature of expectation violations. Furthermore, our results put forward that positive and negative prediction error signalling can be directly linked to regions associated with the processing of different stimulus categories.


Assuntos
Antecipação Psicológica/fisiologia , Giro Para-Hipocampal/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Córtex Pré-Frontal/fisiologia , Percepção Espacial/fisiologia , Lobo Temporal/fisiologia , Adolescente , Adulto , Mapeamento Encefálico , Reconhecimento Facial/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Giro Para-Hipocampal/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Lobo Temporal/diagnóstico por imagem , Adulto Jovem
4.
Front Neurosci ; 14: 573970, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33250704

RESUMO

The influence of delayed auditory feedback on action evaluation and execution of real-life action-induced sounds apart from language and music is still poorly understood. Here, we examined how a temporal delay impacted the behavioral evaluation and neural representation of hurdling and tap-dancing actions in a functional magnetic resonance imaging (fMRI) experiment, postulating that effects of delay diverge between the two, as we create action-induced sounds intentionally in tap dancing, but incidentally in hurdling. Based on previous findings, we expected that conditions differ regarding the engagement of the supplementary motor area (SMA), posterior superior temporal gyrus (pSTG), and primary auditory cortex (A1). Participants were videotaped during a 9-week training of hurdling and tap dancing; in the fMRI scanner, they were presented with point-light videos of their own training videos, including the original or the slightly delayed sound, and had to evaluate how well they performed on each single trial. For the undelayed conditions, we replicated A1 attenuation and enhanced pSTG and SMA engagement for tap dancing (intentionally generated sounds) vs. hurdling (incidentally generated sounds). Delayed auditory feedback did not negatively influence behavioral rating scores in general. Blood-oxygen-level-dependent (BOLD) response transiently increased and then adapted to repeated presentation of point-light videos with delayed sound in pSTG. This region also showed a significantly stronger correlation with the SMA under delayed feedback. Notably, SMA activation increased more for delayed feedback in the tap-dancing condition, covarying with higher rating scores. Findings suggest that action evaluation is more strongly based on top-down predictions from SMA when sounds of intentional action are distorted.

5.
Front Neurosci ; 14: 483, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477059

RESUMO

Most human actions produce concomitant sounds. Action sounds can be either part of the action goal (GAS, goal-related action sounds), as for instance in tap dancing, or a mere by-product of the action (BAS, by-product action sounds), as for instance in hurdling. It is currently unclear whether these two types of action sounds-incidental or intentional-differ in their neural representation and whether the impact on the performance evaluation of an action diverges between the two. We here examined whether during the observation of tap dancing compared to hurdling, auditory information is a more important factor for positive action quality ratings. Moreover, we tested whether observation of tap dancing vs. hurdling led to stronger attenuation in primary auditory cortex, and a stronger mismatch signal when sounds do not match our expectations. We recorded individual point-light videos of newly trained participants performing tap dancing and hurdling. In the subsequent functional magnetic resonance imaging (fMRI) session, participants were presented with the videos that displayed their own actions, including corresponding action sounds, and were asked to rate the quality of their performance. Videos were either in their original form or scrambled regarding the visual modality, the auditory modality, or both. As hypothesized, behavioral results showed significantly lower rating scores in the GAS condition compared to the BAS condition when the auditory modality was scrambled. Functional MRI contrasts between BAS and GAS actions revealed higher activation of primary auditory cortex in the BAS condition, speaking in favor of stronger attenuation in GAS, as well as stronger activation of posterior superior temporal gyri and the supplementary motor area in GAS. Results suggest that the processing of self-generated action sounds depends on whether we have the intention to produce a sound with our action or not, and action sounds may be more prone to be used as sensory feedback when they are part of the explicit action goal. Our findings contribute to a better understanding of the function of action sounds for learning and controlling sound-producing actions.

6.
Neuroimage ; 163: 310-318, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28951351

RESUMO

The neural architecture of the corpus callosum shows pronounced inter-individual differences. These differences are thought to affect timing of interhemispheric interactions and, in turn, functional hemispheric asymmetries. The present study aimed at elucidating the neuronal mechanisms underlying this relationship. To this end, we used a combined DTI and EEG study design. In 103 right-handed and healthy adult participants, we determined the microstructural integrity of the posterior third of the corpus callosum and examined in how far this microstructural integrity was related to between-hemisphere timing differences in neurophysiological correlates of attentional processes in the dichotic listening task. The results show that microstructural integrity of the posterior callosal third correlated with attentional timing differences in a verbal dichotic listening condition but not in a noise control condition. Hence, this association between callosal microstructure and between-hemisphere timing differences is specific for stimuli, which trigger hemispheric bottom-up processing in an asymmetric fashion. Specifically, higher microstructural integrity was associated with decreased left-right differences in the latency of the N1 event-related potential component and hence more symmetric processing of dichotic stimuli between the two hemispheres. Our data suggest that microstructure of the posterior callosal third affects functional hemispheric asymmetries by modulating the timing of interhemispheric interactions.


Assuntos
Corpo Caloso/fisiologia , Lateralidade Funcional/fisiologia , Adolescente , Adulto , Imagem de Tensor de Difusão , Eletroencefalografia , Feminino , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...