Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(13): 3282-3297, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38506668

RESUMO

New functionality is added to the LAMMPS molecular simulation package, which increases the versatility with which LAMMPS can interface with supporting software and manipulate information associated with bonded force fields. We introduce the "type label" framework that allows atom types and their higher-order interactions (bonds, angles, dihedrals, and impropers) to be represented in terms of the standard atom type strings of a bonded force field. Type labels increase the human readability of input files, enable bonded force fields to be supported by the OpenKIM repository, simplify the creation of reaction templates for the REACTER protocol, and increase compatibility with external visualization tools, such as VMD and OVITO. An introductory primer on the forms and use of bonded force fields is provided to motivate this new functionality and serve as an entry point for LAMMPS and OpenKIM users unfamiliar with bonded force fields. The type label framework has the potential to streamline modeling workflows that use LAMMPS by increasing the portability of software, files, and scripts for preprocessing, running, and postprocessing a molecular simulation.

2.
Langmuir ; 40(3): 1747-1760, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38181199

RESUMO

Osteocalcin is the most abundant noncollagenous bone protein and the functions in bone remineralization as well as in inhibition of bone growth have remained unclear. In this contribution, we explain the dual role of osteocalcin in the nucleation of new calcium phosphate during bone remodeling and in the inhibition of hydroxyapatite crystal growth at the molecular scale. The mechanism was derived using pH-resolved all-atom models for the protein, phosphate species, and hydroxyapatite, along with molecular dynamics simulations and experimental and clinical observations. Osteocalcin binds to (hkl) hydroxyapatite surfaces through multiple residues, identified in this work, and the fingerprint of binding residues varies as a function of the (hkl) crystal facet and pH value. On balance, the affinity of osteocalcin to hydroxyapatite slows down crystal growth. The unique tricalcium γ-carboxylglutamic acid (Gla) domain hereby rarely adsorbs to hydroxyapatite surfaces and faces instead toward the solution. The Gla domain enables prenucleation of calcium phosphate for new bone formation at a slightly acidic pH of 5. The growth of prenucleation clusters of calcium phosphate continues upon increase in pH value from 5 to 7 and is much less favorable, or not observed, on the native osteocalcin structure at and above neutral pH values of 7. The results provide mechanistic insight into the early stages of bone remodeling from the molecular scale, help inform mutations of osteocalcin to modify binding to apatites, support drug design, and guide toward potential cures for osteoporosis and hyperosteogeny.


Assuntos
Osso e Ossos , Durapatita , Osteocalcina/genética , Osteocalcina/química , Osteocalcina/metabolismo , Osso e Ossos/metabolismo , Fosfatos de Cálcio/farmacologia
3.
ACS Appl Mater Interfaces ; 16(1): 1861-1875, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38124667

RESUMO

Alumina surface coatings are commonly applied to layered oxide cathode particles for lithium-ion battery applications. Atomic layer deposition (ALD) is one such surface coating technique, and ultrathin alumina ALD films (<2 nm) are shown to improve the electrochemical performance of LiNixMnyCo1-x-yO2 materials, with groups hypothesizing that a beneficial Li-Al-O product is being formed during the alumina ALD process. However, the atomic structure of these films is still not well understood, and quantifying the interface of ultrathin (∼1 nm) ALD films is an arduous experimental task. Here, we perform molecular dynamics simulations of amorphous alumina films of varying thickness in contact with the (0001) LiCoO2 (LCO) surface to quantify the film nanostructure. We calculate elemental mass density profiles through the films and observe that the Li-Al-O interphase extends ∼2 nm from the LCO surface. Additionally, we observe layering of Al and O atoms at the LCO-film interface that extends for ∼1.5 nm. To access the short-range order of the amorphous film, we calculated the Al coordination numbers through the film. We find that while [4]Al is the prevailing coordination environment, significant amounts of [6]Al exist at the interface between the LiCoO2 surface and the film. Taken together, these principal findings point to a pseudomorphic Li-Al-O overlayer that approximates the underlying layered LiCoO2 lattice but does not exactly replicate it. Additionally, with sufficient thickness, the Li-Al-O film transitions to an amorphous alumina structure. We anticipate that our findings on the ALD-like, Li-Al-O film nanostructure can be applied to other layered LiNixMnyCo1-x-yO2 materials because of their shared crystal structure with LiCoO2. This work provides insight into the nanostructure of amorphous ALD alumina films to help inform their use as protective coatings for Li-ion battery cathode active materials.

4.
J Chem Theory Comput ; 19(22): 8293-8322, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37962992

RESUMO

The simulation of metals, oxides, and hydroxides can accelerate the design of therapeutics, alloys, catalysts, cement-based materials, ceramics, bioinspired composites, and glasses. Here we introduce the INTERFACE force field (IFF) and surface models for α-Al2O3, α-Cr2O3, α-Fe2O3, NiO, CaO, MgO, ß-Ca(OH)2, ß-Mg(OH)2, and ß-Ni(OH)2. The force field parameters are nonbonded, including atomic charges for Coulomb interactions, Lennard-Jones (LJ) potentials for van der Waals interactions with 12-6 and 9-6 options, and harmonic bond stretching for hydroxide ions. The models outperform DFT calculations and earlier atomistic models (Pedone, ReaxFF, UFF, CLAYFF) up to 2 orders of magnitude in reliability, compatibility, and interpretability due to a quantitative representation of chemical bonding consistent with other compounds across the periodic table and curated experimental data for validation. The IFF models exhibit average deviations of 0.2% in lattice parameters, <10% in surface energies (to the extent known), and 6% in bulk moduli relative to experiments. The parameters and models can be used with existing parameters for solvents, inorganic compounds, organic compounds, biomolecules, and polymers in IFF, CHARMM, CVFF, AMBER, OPLS-AA, PCFF, and COMPASS, to simulate bulk oxides, hydroxides, electrolyte interfaces, and multiphase, biological, and organic hybrid materials at length scales from atoms to micrometers. The nonbonded character of the models also enables the analysis of mixed oxides, glasses, and certain chemical reactions, and well-performing nonbonded models for silica phases, SiO2, are introduced. Automated model building is available in the CHARMM-GUI Nanomaterial Modeler. We illustrate applications of the models to predict the structure of mixed oxides, and energy barriers of ion migration, as well as binding energies of water and organic molecules in outstanding agreement with experimental data and calculations at the CCSD(T) level. Examples of model building for hydrated, pH-sensitive oxide surfaces to simulate solid-electrolyte interfaces are discussed.

6.
ACS Nano ; 17(11): 9938-9952, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37260141

RESUMO

Understanding molecular interactions with metal surfaces in high reliability is critical for the development of catalysts, sensors, and therapeutics. Obtaining accurate experimental data for a wide range of surfaces remains a critical bottleneck and quantum-mechanical data remain speculative due to high uncertainties and limitations in scale. We report molecular dynamics simulations of adsorption energies and assembly of organic molecules on elemental metal surfaces using the INTERFACE force field (IFF). The force field-based simulations reach up to 8 times higher accuracy than density functional calculations at a million-fold faster speed, as well as more than 1 order of magnitude higher accuracy than other force fields relative to accurate measurements by single-crystal adsorption calorimetry. Uncertainties of prior computational methods are effectively reduced from on the order of 100% to less than 10% and validated by experimental data from multiple sources. Specifically, we describe the molecular interactions of benzene and naphthalene with even and defective platinum surfaces across a wide range of surface coverage in depth. We discuss molecular-scale influences on the heat of adsorption and clarify the definition of surface coverage. The methods can be applied to 18 metals to accurately predict binding and assembly of organic molecules, ligands, electrolytes, biological molecules, and gases without additional fit parameters.

7.
Adv Mater ; 35(16): e2206956, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36808775

RESUMO

Reconfiguration of chiral ceramic nanostructures after ion intercalation should favor specific nanoscale twists leading to strong chiroptical effects.  In this work, V2 O3 nanoparticles are shown to have "built-in" chiral distortions caused by binding of tartaric acid enantiomers to the nanoparticle surface. As evidenced by spectroscopy/microscopy techniques and calculations of nanoscale chirality measures, the intercalation of Zn2+ ions into the V2 O3 lattice results in particle expansion, untwist deformations, and chirality reduction. Coherent deformations in the particle ensemble manifest as changes in sign and positions of circular polarization bands at ultraviolet, visible, mid-infrared (IR), near-IR (NIR), and IR wavelengths. The g-factors observed for IR and NIR spectral diapasons are ≈100-400 times higher than those for previously reported dielectric, semiconductor, and plasmonic nanoparticles. Nanocomposite films layer-by-layer assembled (LBL) from V2 O3 nanoparticles reveal cyclic-voltage-driven modulation of optical activity. Device prototypes for IR and NIR range problematic for liquid crystals and other organic materials are demonstrated. High optical activity, synthetic simplicity, sustainable processability, and environmental robustness of the chiral LBL nanocomposites provide a versatile platform for photonic devices. Similar reconfigurations of particle shapes are expected for multiple chiral ceramic nanostructures, leading to unique optical, electrical, and magnetic properties.

8.
Nat Mater ; 22(1): 18-35, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36446962

RESUMO

Next-generation structural materials are expected to be lightweight, high-strength and tough composites with embedded functionalities to sense, adapt, self-repair, morph and restore. This Review highlights recent developments and concepts in bioinspired nanocomposites, emphasizing tailoring of the architecture, interphases and confinement to achieve dynamic and synergetic responses. We highlight cornerstone examples from natural materials with unique mechanical property combinations based on relatively simple building blocks produced in aqueous environments under ambient conditions. A particular focus is on structural hierarchies across multiple length scales to achieve multifunctionality and robustness. We further discuss recent advances, trends and emerging opportunities for combining biological and synthetic components, state-of-the-art characterization and modelling approaches to assess the physical principles underlying nature-inspired design and mechanical responses at multiple length scales. These multidisciplinary approaches promote the synergetic enhancement of individual materials properties and an improved predictive and prescriptive design of the next era of structural materials at multilength scales for a wide range of applications.


Assuntos
Materiais Biomiméticos , Nanocompostos , Materiais Biomiméticos/química , Nanocompostos/química , Água/química
9.
Nano Lett ; 22(13): 5392-5400, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35730668

RESUMO

The interaction of gas molecules with metal and oxide surfaces plays a critical role in corrosion, catalysis, sensing, and heterogeneous materials. However, insights into the dynamics of O2 from picoseconds to microseconds have remained unavailable to date. We obtained 3D potential energy surfaces for adsorption of O2 on 11 common pristine and partially oxidized (hkl) surfaces of Ni and Al in picometer resolution and high accuracy of 0.1 kcal/mol, identified binding sites, and surface mobility from 25 to 300 °C. We explain relative oxidation rates and parameters for oxide growth. We employed over 150 000 molecular mechanics and molecular dynamics simulations with the interface force field (IFF) using structural data from X-ray diffraction (XRD) and low-energy electron diffraction (LEED). The methods reach 10 to 50 times higher accuracy than possible before and are suited to analyze gas interactions with metals up to the micrometer scale including defects and irregular nanostructures.

10.
ACS Nano ; 16(6): 8766-8783, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35603431

RESUMO

Functionalization of nanoparticles with specific ligands is helpful to control specific diagnostic and therapeutic responses such as protein adsorption, cell targeting, and circulation. Precision delivery critically depends on a fundamental understanding of the interplay between surface chemistry, ligand dynamics, and interaction with the biochemical environment. Due to limited atomic-scale insights into the structure and dynamics of nanoparticle-bound ligands from experiments, relationships of grafting density and ligand chemistry to observable properties such as hydrophilicity and protein interactions remain largely unknown. In this work, we uncover how self-assembled monolayers (SAMs) composed of multisegment ligands such as thioalkyl-PEG-(N-alkyl)amides on gold nanoparticles can mimic mixed hydrophobic and hydrophilic ligand coatings, including control of patterns, hydrophilicity, and specific recognition properties. Our results are derived from molecular dynamics simulations with the INTERFACE-CHARMM36 force field at picometer resolution and comparisons to experiments. Small changes in ligand hydrophobicity, via adjusting the length of the N-terminal alkyl groups, tune water penetration by multiples and control superficial ordering of alkyl chains from 0 to 70% regularity. Further parameters include the grafting density of the ligands, curvature of the nanoparticle surfaces, type of solvent, and overall ligand length, which were examined in detail. We explain the thermodynamic origin of the formation of heterogeneous patterns of multisegment ligand SAMs and illustrate how different degrees of ligand order on the nanoparticle surface affect interactions with bovine serum albumin. The resulting design principles can be applied to a variety of ligand chemistries to customize the behavior of functionalized nanoparticles in biological media and enhance therapeutic efficiency.


Assuntos
Ouro , Nanopartículas Metálicas , Ligantes , Ouro/química , Nanopartículas Metálicas/química , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular
11.
Proc Natl Acad Sci U S A ; 119(19): e2106965119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35522709

RESUMO

Protein scaffolds direct the organization of amorphous precursors that transform into mineralized tissues, but the templating mechanism remains elusive. Motivated by models for the biomineralization of tooth enamel, wherein amyloid-like amelogenin nanoribbons guide the mineralization of apatite filaments, we investigated the impact of nanoribbon structure, sequence, and chemistry on amorphous calcium phosphate (ACP) nucleation. Using full-length human amelogenin and peptide analogs with an amyloid-like domain, films of ß-sheet nanoribbons were self-assembled on graphite and characterized by in situ atomic force microscopy and molecular dynamics simulations. All sequences substantially reduce nucleation barriers for ACP by creating low-energy interfaces, while phosphoserines along the length of the nanoribbons dramatically enhance kinetic factors associated with ion binding. Furthermore, the distribution of negatively charged residues along the nanoribbons presents a potential match to the Ca­Ca distances of the multi-ion complexes that constitute ACP. These findings show that amyloid-like amelogenin nanoribbons provide potent scaffolds for ACP mineralization by presenting energetically and stereochemically favorable templates of calcium phosphate ion binding and suggest enhanced surface wetting toward calcium phosphates in general.


Assuntos
Proteínas do Esmalte Dentário , Nanotubos de Carbono , Amelogenina/química , Proteínas Amiloidogênicas , Sítios de Ligação , Fosfatos de Cálcio
12.
Nanoscale ; 14(18): 7003-7014, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35470836

RESUMO

A classical model in the framework of the INTERFACE force field has been developed for treating the LiCoO2 (LCO) (001)/water interface. In comparison to ab initio molecular dynamics (MD) simulations based on density functional theory, MD simulations using the classical model lead to generally reliable descriptions of interfacial properties, such as the density distribution of water molecules. Water molecules in close contact with the LCO surface form a strongly adsorbed layer, which leads to a free energy barrier for the adsorption of polar or charged molecules to the LCO surface. Moreover, due to the strong hydrogen bonding interactions with the LCO surface, the first water layer forms an interface that exhibits hydrophobic characters, leading to favorable adsorption of non-polar molecules to the interface. Therefore, despite its highly polar nature, the LCO (001) surface binds not only polar/charged but also non-polar solutes. As an application, the model is used to analyze the adsorption of reduced nicotinamide adenine dinucleotide (NADH) and its molecular components to the LCO (001) surface in water. The results suggest that recently observed redox activity of NADH at the LCO/water interface was due to the co-operativity between the ribose component, which drives binding to the LCO surface, and the nicotinamide moiety, which undergoes oxidation.

13.
J Chem Theory Comput ; 18(1): 479-493, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-34871001

RESUMO

Molecular modeling and simulation are invaluable tools for nanoscience that predict mechanical, physicochemical, and thermodynamic properties of nanomaterials and provide molecular-level insight into underlying mechanisms. However, building nanomaterial-containing systems remains challenging due to the lack of reliable and integrated cyberinfrastructures. Here we present Nanomaterial Modeler in CHARMM-GUI, a web-based cyberinfrastructure that provides an automated process to generate various nanomaterial models, associated topologies, and configuration files to perform state-of-the-art molecular dynamics simulations using most simulation packages. The nanomaterial models are based on the interface force field, one of the most reliable force fields (FFs). The transferability of nanomaterial models among the simulation programs was assessed by single-point energy calculations, which yielded 0.01% relative absolute energy differences for various surface models and equilibrium nanoparticle shapes. Three widely used Lennard-Jones (LJ) cutoff methods are employed to evaluate the compatibility of nanomaterial models with respect to conventional biomolecular FFs: simple truncation at r = 12 Å (12 cutoff), force-based switching over 10 to 12 Å (10-12 fsw), and LJ particle mesh Ewald with no cutoff (LJPME). The FF parameters with these LJ cutoff methods are extensively validated by reproducing structural, interfacial, and mechanical properties. We find that the computed density and surface energies are in good agreement with reported experimental results, although the simulation results increase in the following order: 10-12 fsw <12 cutoff < LJPME. Nanomaterials in which LJ interactions are a major component show relatively higher deviations (up to 4% in density and 8% in surface energy differences) compared with the experiment. Nanomaterial Modeler's capability is also demonstrated by generating complex systems of nanomaterial-biomolecule and nanomaterial-polymer interfaces with a combination of existing CHARMM-GUI modules. We hope that Nanomaterial Modeler can be used to carry out innovative nanomaterial modeling and simulations to acquire insight into the structure, dynamics, and underlying mechanisms of complex nanomaterial-containing systems.

14.
J Colloid Interface Sci ; 605: 685-700, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34365305

RESUMO

Hydroxyapatite (HAP) is the major mineral phase in bone and teeth. The interaction of individual amino acids and citrate ions with different crystallographic HAP surfaces has remained uncertain for decades, creating a knowledge gap to rationally design interactions with peptides, proteins, and drugs. In this contribution, we quantify the binding mechanisms and binding free energies of the 20 end-capped natural amino acids and citrate ions on the basal (001) and prismatic (010)/(020) planes of hydroxyapatite at pH values of 7 and 5 for the first time at the molecular scale. We utilized over 1500 steered molecular dynamics simulations with highly accurate potentials that reproduce surface and hydration energies of (hkl) hydroxyapatite surfaces at different pH values. Charged residues demonstrate a much higher affinity to HAP than charge-neutral species due to the formation of superficial ion pairs and ease of penetration into layers of water molecules on the mineral surface. Binding free energies range from 0 to -60 kJ/mol and were determined with ∼ 10% uncertainty. The highest affinity was found for citrate, followed by Asp(-) and Glu(-), and followed after a gap by Arg(+), Lys(+), as well as by His(+) at pH 5. The (hkl)-specific area density of calcium ions, the protonation state of phosphate ions, and subsurface directional order of the ions in HAP lead to surface-specific binding patterns. Amino acids without ionic side groups exhibit weak binding, between -3 and 0 kJ/mol, due to difficulties to penetrate the first layer of water molecules on the apatite surfaces. We explain recognition processes that remained elusive in experiments, in prior simulations, discuss agreement with available data, and reconcile conflicting interpretations. The findings can serve as useful input for the design of peptides, proteins, and drug molecules for the modification of bone and teeth-related materials, as well as control of apatite mineralization.


Assuntos
Aminoácidos , Durapatita , Ácido Cítrico , Concentração de Íons de Hidrogênio , Água
15.
Phys Chem Chem Phys ; 23(33): 18001-18011, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34382985

RESUMO

A hydrophobic heptapeptide, with sequence AFILPTG, as part of a phage capsid protein binds effectively to silica particles carrying negative charge. Here, we explore the silica binding activity of the sequence as a short polypeptide with polar N and C terminals. To describe the structural changes that occur on binding, we fit experimental infrared, Raman and circular dichroism data for a number of structures simulated in the full configuration space of the hepta-peptide using replica exchange molecular dynamics. Quantum chemistry was used to compute normal modes of infrared and Raman spectra and establish a relationship to structures from MD data. To interpret the circular dichroism data, instead of empirical factoring of optical activity into helical/sheet/random components, we exploit natural transition orbital theory and specify the contributions of backbone amide units, side chain functional groups, water, sodium ions and silica to the observed transitions. Computed optical responses suggest a less folded backbone and importance of the N-terminal when close to silica. We further discuss the thermodynamics of the interplay of charged and hydrophobic moieties of the polypeptide on association with the silica surface. The outcomes of this study may assist in the engineering of novel artificial bio-silica heterostructures.


Assuntos
Oligopeptídeos/química , Dióxido de Silício/química , Teoria da Densidade Funcional , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Desdobramento de Proteína , Dióxido de Silício/síntese química , Propriedades de Superfície
16.
J Chem Theory Comput ; 17(8): 5198-5213, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34255965

RESUMO

Gas molecules and interfaces with liquids and solids play a critical role in living organisms, sorption, catalysis, and the environment. Monitoring adsorption and heterogeneous interfaces remains difficult in experiments, and earlier models for molecular simulations lead to errors over 100% in fundamental molecular properties. We introduce conceptually new force field parameters for molecular oxygen, nitrogen, and hydrogen that reduce deviations to <5%. We employ a combination of a harmonic bond stretching potential and Lennard-Jones parameters with 12-6 and 9-6 options, leading to computed bond lengths, Raman peaks, liquid densities, vaporization enthalpies, and free energies of hydration in impressive agreement with experiments. Reliable free energies of hydration were obtained upon validation of density and vaporization energy without significant further parameter adjustments. We illustrate applications to O2 adsorption on Pt electrocatalysts and N2 adsorption in zeolites, showing <5% deviation in adsorption energies measured in experiments without additional fitting parameters. We discuss the chemical interpretation of all parameters and explain the reasons for discrepancies in earlier models. Compatibility with the Interface Force Field (IFF), CHARMM, AMBER, OPLS-AA, GROMOS, DREIDING, CVFF, PCFF, COMPASS, and QM/MM methods enables reliable simulations of gases and liquid/solid interfaces with biopolymers, minerals, and metals. The parametrization protocol can be applied to similar molecules.

18.
Sci Adv ; 7(24)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34108201

RESUMO

The oxygen reduction reaction (ORR) on platinum catalysts is essential in fuel cells. Quantitative predictions of the relative ORR activity in experiments, in the range of 1 to 50 times, have remained challenging because of incomplete mechanistic understanding and lack of computational tools to account for the associated small differences in activation energies (<2.3 kilocalories per mole). Using highly accurate molecular dynamics (MD) simulation with the Interface force field (0.1 kilocalories per mole), we elucidated the mechanism of adsorption of molecular oxygen on regular and irregular platinum surfaces and nanostructures, followed by local density functional theory (DFT) calculations. The relative ORR activity is determined by oxygen access to platinum surfaces, which greatly depends on specific water adlayers, while electron transfer occurs at a similar slow rate. The MD methods facilitate quantitative predictions of relative ORR activities of any platinum nanostructures, are applicable to other catalysts, and enable effective MD/DFT approaches.

19.
Langmuir ; 37(21): 6347-6356, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34000196

RESUMO

Cement and concrete are rapidly growing in demand and pose many unresolved chemistry questions at particle interfaces, during hydration reactions, regarding the role of electrolytes and organic additives. Solutions through developing greener, more sustainable formulations are needed to reduce the high carbon footprint that amounts to 11% of global CO2 emissions. Cement is a multiphase material composed of calcium silicates, aluminates, and other mineral phases, produced from natural and low-cost industrial sources, which undergoes complex hydration reactions. This perspective highlights current research challenges and opportunities for new chemistry insight, including intriguing colloid and interface science problems that involve mineral surfaces, electrolytes, polymers, and hydration reactions. Specifically, we discuss (1) characteristics of cement phases, supplementary cementitious materials, and other constituents, (2) hydration reactions and the characterization by imaging and NMR spectroscopy, (3) the structure of hydrated cement phases including calcium-silicate-hydrates at different scales, (4) quantitative simulation techniques from the atomic scale to microscale kinetic models, and (5) the function of organic additives. Focusing on new directions, we explain the benefits of integrating knowledge from inorganic chemistry, acid-base chemistry, polymer chemistry, reaction mechanisms, and theory to describe mesoscale cement properties and bulk properties upon manufacturing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...