Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 220(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34791189

RESUMO

While direct additive and dominance effects on complex traits have been mapped repeatedly, additional genetic factors contributing to the heterogeneity of complex traits have been scarcely investigated. To assess genetic background effects, we investigated transmission ratio distortions (TRDs) of alleles from parent to offspring using an advanced intercross line (AIL) of an initial cross between the mouse inbred strains C57BL/6NCrl (B6N) and BFMI860-12 [Berlin Fat Mouse Inbred (BFMI)]. A total of 341 males of generation 28 and their respective 61 parents and 66 grandparents were genotyped using Mega Mouse Universal Genotyping Arrays. TRDs were investigated using allele transmission asymmetry tests, and pathway overrepresentation analysis was performed. Sequencing data were used to test for overrepresentation of nonsynonymous SNPs (nsSNPs) in TRD regions. Genetic incompatibilities were tested using the Bateson-Dobzhansky-Muller two-locus model. A total of 62 TRD regions were detected, many in close proximity to the telocentric centromere. TRD regions contained 44.5% more nsSNPs than randomly selected regions (182 vs 125.9 ± 17.0, P < 1 × 10-4). Testing for genetic incompatibilities between TRD regions identified 29 genome-wide significant incompatibilities between TRD regions [P(BF) < 0.05]. Pathway overrepresentation analysis of genes in TRD regions showed that DNA methylation, epigenetic regulation of RNA, and meiotic/meiosis regulation pathways were affected independent of the parental origin of the TRD. Paternal BFMI TRD regions showed overrepresentation in the small interfering RNA biogenesis and in the metabolism of lipids and lipoproteins. Maternal B6N TRD regions harbored genes involved in meiotic recombination, cell death, and apoptosis pathways. The analysis of genes in TRD regions suggests the potential distortion of protein-protein interactions influencing obesity and diabetic retinopathy as a result of disadvantageous combinations of allelic variants in Aass, Pgx6, and Nme8. Using an AIL significantly improves the resolution at which we can investigate TRD. Our analysis implicates distortion of protein-protein interactions as well as meiotic drive as the underlying mechanisms leading to the observed TRD in our AIL. Furthermore, genes with large amounts of nsSNPs located in TRD regions are more likely to be involved in pathways that are related to the phenotypic differences between the parental strains. Genes in these TRD regions provide new targets for investigating genetic adaptation, protein-protein interactions, and determinants of complex traits such as obesity.


Assuntos
Epigênese Genética
2.
J Biophotonics ; 10(10): 1345-1355, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28128535

RESUMO

The excess deposition of triglycerides in adipose tissue is the main reason of obesity and causes excess release of fatty acids to the circulatory system resulting in obesity and insulin resistance. Body mass index and waist circumference are not precise measure of obesity and obesity related metabolic diseases. Therefore, in the current study, it was aimed to propose triglyceride bands located at 1770-1720 cm-1 spectral region as a more sensitive obesity related biomarker using the diagnostic potential of Fourier Transform Infrared (FTIR) spectroscopy in subcutaneous (SCAT) and visceral (VAT) adipose tissues. The adipose tissue samples were obtained from 10 weeks old male control (DBA/2J) (n = 6) and four different obese BFMI mice lines (n = 6 per group). FTIR spectroscopy coupled with hierarchical cluster analysis (HCA) and principal component analysis (PCA) was applied to the spectra of triglyceride bands as a diagnostic tool in the discrimination of the samples. Successful discrimination of the obese, obesity related insulin resistant and control groups were achieved with high sensitivity and specificity. The results revealed the power of FTIR spectroscopy coupled with chemometric approaches in internal diagnosis of abdominal obesity based on the spectral differences in the triglyceride region that can be used as a spectral marker.


Assuntos
Tecido Adiposo/patologia , Diferenciação Celular , Informática , Obesidade/patologia , Espectroscopia de Infravermelho com Transformada de Fourier , Triglicerídeos/metabolismo , Animais , Análise por Conglomerados , Camundongos , Análise de Componente Principal
3.
Methods Mol Biol ; 1488: 481-497, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27933540

RESUMO

Obesity is a complex trait, determined by many genes and influenced by environmental factors. Mapping genomic loci contributing to obesity helps to identify gene variants responsible for differences in the phenotype. However, measuring fat content alone is often not sufficient to identify the underlying gene or genes. Besides in-depth phenotyping, well-designed genetic populations and the combined analysis of data of different origins are necessary to detect one of several genetic determinants. Structured mouse populations and linking information from different experiments help to simplify the complexity in the search for direct genetic effects or factors that are hidden in the genome. In this chapter we present an example of how the physicochemical characterization of adipose tissue in BXD recombinant inbred lines contributes to enlighten the obese phenotype of mice. We describe the search for gene(s) contributing to collagen content in adipose tissue of BXD strains using the GeneNetwork platform.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Obesidade/genética , Tecido Adiposo/metabolismo , Animais , Mapeamento Cromossômico , Biologia Computacional/métodos , Cruzamentos Genéticos , Modelos Animais de Doenças , Estudos de Associação Genética/métodos , Ligação Genética , Camundongos , Camundongos Endogâmicos , Obesidade/metabolismo , Fenótipo , Locos de Características Quantitativas , Software
5.
BMC Genomics ; 16: 904, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26546267

RESUMO

BACKGROUND: We investigated parent-of-origin and allele-specific expression effects on obesity and hepatic gene expression in reciprocal crosses between the Berlin Fat Mouse Inbred line (BFMI) and C57Bl/6NCrl (B6N). RESULTS: We found that F1-males with a BFMI mother developed 1.8 times more fat mass on a high fat diet at 10 weeks than F1-males of a BFMI father. The phenotype was detectable from six weeks on and was preserved after cross-fostering. RNA-seq data of liver provided evidence for higher biosynthesis and elongation of fatty acids (p = 0.00635) in obese male offspring of a BFMI mother versus lean offspring of a BFMI father. Furthermore, fatty acid degradation (p = 0.00198) and the peroxisome pathway were impaired (p = 0.00094). The circadian rhythm was affected as well (p = 0.00087). Among the highest up-regulated protein coding genes in obese males were Acot4 (1.82 fold, p = 0.022), Cyp4a10 (1.35 fold, p = 0.026) and Cyp4a14 (1.32 fold, p = 0.012), which hydroxylize fatty acids and which are known to be increased in liver steatosis. Obese males showed lower expression of the genetically imprinted and paternally expressed 3 (Peg3) gene (0.31 fold, p = 0.046) and higher expression of the androgen receptor (Ar) gene (2.38 fold, p = 0.068). Allelic imbalance was found for expression of ATP-binding cassette transporter gene Abca8b. Several of the differentially expressed genes contain estrogen response elements. CONCLUSIONS: Parent-of-origin effects during gametogenesis and/or fetal development in an obese mother epigenetically modify the transcription of genes that lead to enhanced fatty acid synthesis and impair ß-oxidation in the liver of male, but not female F1 offspring. Down-regulation of Peg3 could contribute to trigger this metabolic setting. At puberty, higher amounts of the androgen receptor and altered access to estrogen response elements in affected genes are likely responsible for male specific expression of genes that were epigenetically triggered. A suggestive lack of estrogen binding motifs was found for highly down-regulated genes in adult hepatocytes of obese F1 males (p = 0.074).


Assuntos
Obesidade/genética , Animais , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Ácidos Graxos/metabolismo , Feminino , Fígado/metabolismo , Masculino , Camundongos , Puberdade/genética
6.
Appl Spectrosc ; 69(6): 679-88, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26054332

RESUMO

The current study aims to determine lipid profiles in terms of the content and structure of skeletal muscle and adipose tissues to better understand the characteristics of juvenile-onset spontaneous obesity without high fat diet induction. For the purposes of this study, muscle (longissimus, quadriceps) and adipose (inguinal, gonadal) tissues of 10-week-old male DBA/2J and Berlin fat mouse inbred (BFMI) lines (BFMI856, BFMI860, BFMI861) fed with a standard breeding diet were used. Biomolecular structure and composition was determined using attenuated total reflection Fourier transform (ATR FT-IR) spectroscopy, and muscle triglyceride content was further quantified using high-performance liquid chromatography (HPLC) coupled with an evaporative light scattering detector (ELSD). The results revealed a loss of unsaturation in BFMI860 and BFMI861 lines in both muscles and inguinal adipose tissue, together with a decrease in the hydrocarbon chain length of lipids, especially in the BFMI860 line in muscles, suggesting an increased lipid peroxidation. There was an increase in saturated lipid and triglyceride content in all tissues of BFMI lines, more profoundly in longissimus muscle, where the increased triglyceride content was quantitatively confirmed by HPLC-ELSD. Moreover, an increase in the metabolic turnover of carbohydrates in muscles of the BFMI860 line was observed. The results demonstrated that subcutaneous (inguinal) fat also displayed considerable obesity-induced alterations. Taken together, the results revealed differences in lipid structure and content of BFMI lines, which may originate from different insulin sensitivity levels of the lines, making them promising animal models for spontaneous obesity. The results will contribute to the understanding of the generation of insulin resistance in obesity without high fat diet induction.


Assuntos
Tecido Adiposo/química , Lipídeos/análise , Músculo Esquelético/química , Obesidade Infantil/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Animais , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Lipídeos/química , Camundongos , Camundongos Endogâmicos DBA
7.
Analyst ; 140(7): 2205-14, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25692183

RESUMO

Obesity is a heterogeneous disorder which increases risks for multiple metabolic diseases, such as type 2 diabetes. The current study aims to characterize and compare visceral and subcutaneous adipose tissues in terms of macromolecular content and investigate transdifferentiation between white and brown adipocytes. Regarding this aim, Fourier transform infrared (FTIR) microspectroscopy and uncoupling protein 1 (UCP1) immunohistological staining were used to investigate gonadal (visceral) and inguinal (subcutaneous) adipose tissues of male Berlin fat mice inbred (BFMI) lines, which are spontaneously obese. The results indicated a remarkable increase in the lipid/protein ratio, accompanied with a decrease of UCP1 protein content which might be due to the transdifferentiation of brown adipocytes to white adipocytes in obese groups. It has been widely reported that brown adipose tissue has a strong effect on fatty acid and glucose homeostasis and it could provide an opportunity for the therapy of obesity. When the amount of brown adipose tissue was decreased, lower unsaturation/saturation ratio, qualitatively longer hydrocarbon acyl chain length of lipids and higher amount of triglycerides were obtained in both adipose tissues of mice lines. The results also revealed that subcutaneous adipose tissue was more prone to obesity-induced structural changes than visceral adipose tissue, which could originate from it possessing a lower amount of brown adipose tissue. The current study clearly revealed the power of FTIR microspectroscopy in the precise determination of obesity-induced structural and functional changes in inguinal and gonadal adipose tissue of mice lines.


Assuntos
Adipócitos Marrons/citologia , Adipócitos Brancos/citologia , Adiposidade , Transdiferenciação Celular , Gordura Intra-Abdominal/citologia , Imagem Óptica , Gordura Subcutânea/citologia , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Animais , Gordura Intra-Abdominal/metabolismo , Masculino , Camundongos , Espectroscopia de Infravermelho com Transformada de Fourier , Gordura Subcutânea/metabolismo
8.
Physiol Genomics ; 45(18): 817-26, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-23922126

RESUMO

Obesity, a state of imbalance between lean mass and fat mass, is important for the etiology of diseases affected by the interplay of multiple genetic and environmental factors. Although genome-wide association studies have repeatedly associated genes with obesity and body weight, the mechanisms underlying the interaction between the muscle and adipose tissues remain unknown. Using 351 mice (at 10 wk of age) of an intercross population between Berlin Fat Mouse Inbred (BFMI) and C57BL/6NCrl (B6N) mice, we examined the causal relationships between genetic variations and multiple traits: body lean mass and fat mass, adipokines, and bone mineral density. Furthermore, evidence from structural equation modeling suggests causality among these traits. In the BFMI model, juvenile obesity affects lean mass and impairs bone mineral density via adipokines secreted from the white adipose tissues. While previous studies have indicated that lean mass has a causative effect on adiposity, in the Berlin Fat Mouse model that has been selected for juvenile obesity (at 9 wk of age) for >90 generations, however, the causality is switched from fat mass to lean mass. In addition, linkage studies and statistical modeling have indicated that quantitative trait loci on chromosomes 5 and 6 affect both lean mass and fat mass. These lines of evidence indicate that the muscle and adipose tissues interact with one another and the interaction is modulated by genetic variations that are shaped by selections. Experimental examinations are necessary to verify the biological role of the inferred causalities.


Assuntos
Modelos Animais de Doenças , Obesidade/genética , Adiponectina/sangue , Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Adiposidade , Animais , Peso Corporal/genética , Densidade Óssea , Cruzamentos Genéticos , Feminino , Estudos de Associação Genética , Ligação Genética , Variação Genética , Leptina/sangue , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculos/metabolismo , Obesidade/patologia , Fenótipo , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...