Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38257668

RESUMO

Implantable cell replacement therapies promise to completely restore the function of neural structures, possibly changing how we currently perceive the onset of neurodegenerative diseases. One of the major clinical hurdles for the routine implementation of stem cell therapies is poor cell retention and survival, demanding the need to better understand these mechanisms while providing precise and scalable approaches to monitor these cell-based therapies in both pre-clinical and clinical scenarios. This poses significant multidisciplinary challenges regarding planning, defining the methodology and requirements, prototyping and different stages of testing. Aiming toward an optogenetic neural stem cell implant controlled by a smart wireless electronic frontend, we show how an iterative development methodology coupled with a modular design philosophy can mitigate some of these challenges. In this study, we present a miniaturized, wireless-controlled, modular multisensor platform with fully interfaced electronics featuring three different modules: an impedance analyzer, a potentiostat and an optical stimulator. We show the application of the platform for electrical impedance spectroscopy-based cell monitoring, optical stimulation to induce dopamine release from optogenetically modified neurons and a potentiostat for cyclic voltammetry and amperometric detection of dopamine release. The multisensor platform is designed to be used as an opto-electric headstage for future in vivo animal experiments.


Assuntos
Experimentação Animal , Dopamina , Animais , Optogenética , Encéfalo , Próteses e Implantes
2.
Bioelectrochemistry ; 149: 108306, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36345111

RESUMO

The pathophysiological progress of Parkinson's disease leads through degeneration of dopaminergic neurons in the substantia nigra to complete cell death and lack of dopamine in the striatum where it modulates motor functions. Transplantation of dopaminergic stem cell-derived neurons is a possible therapy to restore dopamine levels. We have previously presented multifunctional pyrolytic carbon coated leaky optoelectrical fibers (LOEFs) with laser ablated micro-optical windows (µOWs) as carriers for channelrhodopsin-2 modified optogenetically active neurons for light-induced on-demand dopamine release and amperometric real-time detection. To increase the dopamine release by stimulating a larger neuronal population with light, we present here a novel approach to generate µOWs through laser ablation around the entire circumference of optical fibers to obtain Omni-LOEFs. Cyclic voltammetric characterization of the pyrolytic carbon showed that despite the increased number of µOWs, the electrochemical properties were not deteriorated. Finally, we demonstrate that the current recorded during real-time detection of dopamine upon light-induced stimulation of neurons differentiated on Omni-LOEFs is significantly higher compared to recordings from the same number of cells seeded on LOEFs with µOWs only on one side. Moreover, by varying the cell seeding density, we show that the recorded current is proportional to the dimension of the cell population.


Assuntos
Dopamina , Optogenética , Neurônios/fisiologia , Carbono/metabolismo
3.
Adv Sci (Weinh) ; 9(25): e2201392, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35712780

RESUMO

Human in vitro models of neural tissue with tunable microenvironment and defined spatial arrangement are needed to facilitate studies of brain development and disease. Towards this end, embedded printing inside granular gels holds great promise as it allows precise patterning of extremely soft tissue constructs. However, granular printing support formulations are restricted to only a handful of materials. Therefore, there has been a need for novel materials that take advantage of versatile biomimicry of bulk hydrogels while providing high-fidelity support for embedded printing akin to granular gels. To address this need, Authors present a modular platform for bioengineering of neuronal networks via direct embedded 3D printing of human stem cells inside Self-Healing Annealable Particle-Extracellular matrix (SHAPE) composites. SHAPE composites consist of soft microgels immersed in viscous extracellular-matrix solution to enable precise and programmable patterning of human stem cells and consequent generation mature subtype-specific neurons that extend projections into the volume of the annealed support. The developed approach further allows multi-ink deposition, live spatial and temporal monitoring of oxygen levels, as well as creation of vascular-like channels. Due to its modularity and versatility, SHAPE biomanufacturing toolbox has potential to be used in applications beyond functional modeling of mechanically sensitive neural constructs.


Assuntos
Microgéis , Tecido Nervoso , Humanos , Hidrogéis , Impressão Tridimensional , Alicerces Teciduais
5.
Biofabrication ; 13(1): 011001, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33724233

RESUMO

Brain organoids are considered to be a highly promising in vitro model for the study of the human brain and, despite their various shortcomings, have already been used widely in neurobiological studies. Especially for drug screening applications, a highly reproducible protocol with simple tissue culture steps and consistent output, is required. Here we present an engineering approach that addresses several existing shortcomings of brain organoids. By culturing brain organoids with a polycaprolactone scaffold, we were able to modify their shape into a flat morphology. Engineered flat brain organoids (efBOs) possess advantageous diffusion conditions and thus their tissue is better supplied with oxygen and nutrients, preventing the formation of a necrotic tissue core. Moreover, the efBO protocol is highly simplified and allows to customize the organoid size directly from the start. By seeding cells onto 12 by 12 mm scaffolds, the brain organoid size can be significantly increased. In addition, we were able to observe folding reminiscent of gyrification around day 20, which was self-generated by the tissue. To our knowledge, this is the first study that reports intrinsically caused gyrification of neuronal tissue in vitro. We consider our efBO protocol as a next step towards the generation of a stable and reliable human brain model for drug screening applications and spatial patterning experiments.


Assuntos
Encéfalo , Organoides , Avaliação Pré-Clínica de Medicamentos , Humanos , Oxigênio , Engenharia Tecidual
6.
ACS Appl Mater Interfaces ; 13(3): 3591-3604, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33438397

RESUMO

A reversible switchable on-demand UV-triggered drug delivery system (DDS) based on interpenetrating polymer networks (IPNs) with silicone as the host polymer and spiropyran (SP)-functionalized guest polymer is designed and demonstrated. The photo-responsive IPNs provide a new triggered drug delivery concept as they exploit the change in intermolecular interactions (work of adhesion) among the drug, matrix, and solvent when the incorporated hydrophobic SP moieties transform into the hydrophilic merocyanine form upon light irradiation without degradation and disruption of the DDS. The change in how the copolymer composition (hydrophilicity and content) and the lipophilicity of the drug (log P) affect the release profile was investigated. A thermodynamic model, based on Hansen solubility parameters, was developed to design and optimize the polymer composition of the IPNs to obtain the most efficient light-triggered drug release and suppression of the premature release. The developed IPNs showed excellent result for dopamine, l-dopa, and prednisone with around 90-95% light-triggered release. The model was applied to study the release behavior of drugs with different log P and to estimate if the light-induced hydrophobic-to-hydrophilic switch can overcome the work of adhesion between polymers and drugs and hence the desorption and release of the drugs. To the best of our knowledge, this is the first time that work of adhesion is used for this aim. Comparing the result obtained from the model and experiment shows that the model is useful for evaluating and estimating the release behavior of specific drugs merocyanine, IPN, DDS, and spiropyran.


Assuntos
Benzopiranos/química , Preparações de Ação Retardada/química , Indóis/química , Nitrocompostos/química , Polímeros/química , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Dopamina/administração & dosagem , Dopamina/química , Dopaminérgicos/administração & dosagem , Dopaminérgicos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos da radiação , Interações Hidrofóbicas e Hidrofílicas , Levodopa/administração & dosagem , Levodopa/química , Prednisona/administração & dosagem , Prednisona/química , Raios Ultravioleta
7.
ACS Appl Bio Mater ; 4(2): 1624-1631, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014511

RESUMO

A photoresponsive molecular-gated drug delivery system (DDS) based on silicone-hydrogel (poly(HEMA-co-PEGMEA)) interpenetrating polymer networks (IPNs) functionalized with carboxylated spiropyran (SPCOOH) was designed and demonstrated as an on-demand DDS. The triggered-release mechanism relies on controlling the wetting behavior of the surface by light, exploiting different hydrophobicities between the "closed" and "open" isomers of spiropyran as a photoswitchable molecular gate on the surface of IPN (SP-photogated IPN). Light-triggered release of doxycycline (DOX) as a model drug indicated that the spiropyran (SP) molecules provide a hydrophobic layer around the drug carrier and have a good gate-closing efficiency for IPNs with 20-30% hydrogel content. Upon UV light irradiation, SP converts into an open hydrophilic merocyanine state, which triggers the release of DOX. These results were compared with a previously developed SP-bulk modified IPN using the same hydrogel as a control, proving the efficiency of the gated IPN system. The covalent attachment of SPCOOH to the alcohol groups of the hydrogel and the structural change caused by UV light was indicated with FTIR analysis. XPS results also confirm the presence of SP by indicating the atomic percentage of nitrogen with respect to the hydrogel content.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Humanos
8.
Adv Healthc Mater ; 9(20): e2001108, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32902188

RESUMO

Advancements in research on the interaction of human neural stem cells (hNSCs) with nanotopographies and biomaterials are enhancing the ability to influence cell migration, proliferation, gene expression, and tailored differentiation toward desired phenotypes. Here, the fabrication of pyrolytic carbon nanograss (CNG) nanotopographies is reported and demonstrated that these can be employed as cell substrates boosting hNSCs differentiation into dopaminergic neurons (DAn), a long-time pursued goal in regenerative medicine based on cell replacement. In the near future, such structures can play a crucial role in the near future for stem-cell based cell replacement therapy (CRT) and bio-implants for Parkinson's disease (PD). The unique combination of randomly distributed nanograss topographies and biocompatible pyrolytic carbon material is optimized to provide suitable mechano-material cues for hNSCs adhesion, division, and DAn differentiation of midbrain hNSCs. The results show that in the presence of the biocoating poly-L-lysine (PLL), the CNG enhances hNSCs neurogenesis up to 2.3-fold and DAn differentiation up to 3.5-fold. Moreover, for the first time, consistent evidence is provided, that CNGs without any PLL coating are not only supporting cell survival but also lead to significantly enhanced neurogenesis and promote hNSCs to acquire dopaminergic phenotype compared to PLL coated topographies.


Assuntos
Células-Tronco Neurais , Carbono , Diferenciação Celular , Humanos , Mesencéfalo , Neurogênese
9.
Adv Sci (Weinh) ; 7(16): 2001150, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32832365

RESUMO

Compartmentalized microfluidic platforms are an invaluable tool in neuroscience research. However, harnessing the full potential of this technology remains hindered by the lack of a simple fabrication approach for the creation of intricate device architectures with high-aspect ratio features. Here, a hybrid additive manufacturing approach is presented for the fabrication of open-well compartmentalized neural devices that provides larger freedom of device design, removes the need for manual postprocessing, and allows an increase in the biocompatibility of the system. Suitability of the method for multimaterial integration allows to tailor the device architecture for the long-term maintenance of healthy human stem-cell derived neurons and astrocytes, spanning at least 40 days. Leveraging fast-prototyping capabilities at both micro and macroscale, a proof-of-principle human in vitro model of the nigrostriatal pathway is created. By presenting a route for novel materials and unique architectures in microfluidic systems, the method provides new possibilities in biological research beyond neuroscience applications.

10.
Anal Bioanal Chem ; 412(24): 6371-6380, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32451643

RESUMO

Evaluation and understanding the effect of drug delivery in in vitro systems is fundamental in drug discovery. We present an assay based on real-time electrical impedance spectroscopy (EIS) measurements that can be used to follow the internalisation and cytotoxic effect of a matrix metalloproteinase (MMP)-sensitive liposome formulation loaded with oxaliplatin (OxPt) on colorectal cancer cells. The EIS response identified two different cellular processes: (i) a negative peak in the cell index (CI) within the first 5 h, due to onset of liposome endocytosis, followed by (ii) a subsequent CI increase, due to the reattachment of cells until the onset of cytotoxicity with a decrease in CI. Free OxPt or OxPt-loaded Stealth liposomes did not show this two-stage EIS response; the latter can be due to the fact that Stealth cannot be cleaved by MMPs and thus is not taken up by the cells. Real-time bright-field imaging supported the EIS data, showing variations in cell adherence and cell morphology after exposure to the different liposome formulations. A drastic decrease in cell coverage as well as rounding up of cells during the first 5 h of exposure to OxPt-loaded (MMP)-sensitive liposome formulation is reflected by the first negative EIS response, which indicates the onset of liposome endocytosis. Graphical abstract.


Assuntos
Antineoplásicos/administração & dosagem , Endocitose , Lipossomos , Oxaliplatina/administração & dosagem , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Espectroscopia Dielétrica , Humanos , Oxaliplatina/farmacologia
11.
Anal Bioanal Chem ; 412(24): 6307-6318, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32166446

RESUMO

Vesicles constructed of either synthetic polymers alone (polymersomes) or a combination of polymers and lipids (lipo-polymersomes) demonstrate excellent long-term stability and ability to integrate membrane proteins. Applications using lipo-polymersomes with integrated membrane proteins require suitable supports to maintain protein functionality. Using lipo-polymersomes loaded with the light-driven proton pump bacteriorhodopsin (BR), we demonstrate here how the photocurrent is influenced by a chosen support. In our study, we deposited BR-loaded lipo-polymersomes in a cross-linked polyelectrolyte multilayer assembly either directly physisorbed on gold electrode microchips or cross-linked on an intermediary polyethersulfone (PES) membrane covalently grafted using a hydrogel cushion. In both cases, electrochemical impedance spectroscopic characterization demonstrated successful polyelectrolyte assembly with BR-loaded lipo-polymersomes. Light-induced proton pumping by BR-loaded lipo-polymersomes in the different support constructs was characterized by amperometric recording of the generated photocurrent. Application of the hydrogel/PES membrane support together with the polyelectrolyte assembly decreased the transient current response upon light activation of BR, while enhancing the generated stationary current to over 700 nA/cm2. On the other hand, the current response from BR-loaded lipo-polymersomes in a polyelectrolyte assembly without the hydrogel/PES membrane support was primarily a transient peak combined with a low-nanoampere-level stationary photocurrent. Hence, the obtained results demonstrated that by using a hydrogel/PES support it was feasible to monitor continuously light-induced proton flux in biomimetic applications of lipo-polymersomes. Graphical abstract.


Assuntos
Bacteriorodopsinas/química , Halobacterium salinarum/química , Membranas Artificiais , Polímeros/química , Sulfonas/química , Fontes de Energia Bioelétrica , Reagentes de Ligações Cruzadas/química , Eletricidade , Desenho de Equipamento , Hidrogéis/química , Luz , Modelos Moleculares , Polieletrólitos/química
12.
Adv Sci (Weinh) ; 6(24): 1902011, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31871869

RESUMO

In Parkinson's disease, the degeneration of dopaminergic neurons in substantia nigra leads to a decrease in the physiological levels of dopamine in striatum. The existing dopaminergic therapies effectively alleviate the symptoms, albeit they do not revert the disease progression and result in significant adverse effects. Transplanting dopaminergic neurons derived from stem cells could restore dopamine levels without additional motor complications. However, the transplanted cells disperse in vivo and it is not possible to stimulate them on demand to modulate dopamine release to prevent dyskinesia. In order to address these issues, this paper presents a multifunctional leaky optoelectrical fiber for potential neuromodulation and as a cell substrate for application in combined optogenetic stem cell therapy. Pyrolytic carbon coated optical fibers are laser ablated to pattern micro-optical windows to permit light leakage over a large area. The pyrolytic carbon acts as an excellent electrode for the electrochemical detection of dopamine. Human neural stem cells are genetically modified to express the light sensitive opsin channelrhodopsin-2 and are differentiated into dopaminergic neurons on the leaky optoelectrical fiber. Finally, light leaking from the micro-optical windows is used to stimulate the dopaminergic neurons resulting in the release of dopamine that is detected in real-time using chronoamperometry.

13.
ACS Sens ; 2(12): 1869-1875, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29164868

RESUMO

In this work, we present a dual-functional sensor that can perform surface-enhanced Raman spectroscopy (SERS) based identification and electrochemical (EC) quantification of analytes in liquid samples. A lithography-free reactive ion etching process was utilized to obtain nanostructures of high aspect ratios distributed homogeneously on a 4 in. fused silica wafer. The sensor was made up of three-electrode array, obtained by subsequent e-beam evaporation of Au on nanostructures in selected areas through a shadow mask. The SERS performance was evaluated through surface-averaged enhancement factor (EF), which was ∼6.2 × 105, and spatial uniformity of EF, which was ∼13% in terms of relative standard deviation. Excellent electrochemical performance and reproducibility were revealed by recording cyclic voltammograms. On nanostructured electrodes, paracetamol (PAR) showed an improved quasi-reversible behavior with decrease in peak potential separation (ΔEp ∼ 90 mV) and higher peak currents (Ipa/Ipc ∼ 1), compared to planar electrodes (ΔEp ∼ 560 mV). The oxidation potential of PAR was also lowered by ∼80 mV on nanostructured electrodes. To illustrate dual-functional sensing, quantitative evaluation of PAR ranging from 30 µM to 3 mM was realized through EC detection, and the presence of PAR was verified by its SERS fingerprint.


Assuntos
Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Acetaminofen/análise , Eletrodos , Ouro/química , Oxirredução , Propriedades de Superfície
14.
Plant Physiol Biochem ; 118: 71-76, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28622601

RESUMO

The barley aleurone layer is an established model system for studying phytohormone signalling, enzyme secretion and programmed cell death during seed germination. Most analyses performed on the aleurone layer are end-point assays based on cell extracts, meaning each sample is only analysed at a single time point. By immobilising barley aleurone layer tissue on polydimethylsiloxane pillars in the lid of a multiwell plate, continuous monitoring of living tissue is enabled using multiple non-destructive assays in parallel. Cell viability and menadione reducing capacity were monitored in the same aleurone layer samples over time, in the presence or absence of plant hormones and other effectors. The system is also amenable to transient gene expression by particle bombardment, with simultaneous monitoring of cell death. In conclusion, the easy to handle and efficient experimental setup developed here enables continuous monitoring of tissue samples, parallelisation of assays and single cell analysis, with potential for time course studies using any plant tissue that can be immobilised, for example leaves or epidermal peels.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Germinação/fisiologia , Hordeum/metabolismo , Células Vegetais/metabolismo , Proteínas de Plantas/metabolismo
15.
Sensors (Basel) ; 16(11)2016 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-27801809

RESUMO

We compare ultrasonic welding (UW) and thermal bonding (TB) for the integration of embedded thin-film gold electrodes for electrochemical applications in injection molded (IM) microfluidic chips. The UW bonded chips showed a significantly superior electrochemical performance compared to the ones obtained using TB. Parameters such as metal thickness of electrodes, depth of electrode embedding, delivered power, and height of energy directors (for UW), as well as pressure and temperature (for TB), were systematically studied to evaluate the two bonding methods and requirements for optimal electrochemical performance. The presented technology is intended for easy and effective integration of polymeric Lab-on-Chip systems to encourage their use in research, commercialization and education.

16.
Anal Chem ; 88(19): 9582-9589, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27598723

RESUMO

An impedance-based label-free affinity sensor was developed for the recognition of glycated hemoglobin (HbA1c). Interdigitated gold microelectrode arrays (IDAs) were first modified with a self-assembled monolayer of cysteamine followed by cross-linking with glutaraldehyde and subsequent binding of 3-aminophenylboronic acid (APBA), which selectively binds HbA1c via cis-diol interactions. Impedance sensing was demonstrated to be highly responsive to the clinically relevant HbA1c levels (0.1%-8.36%) with a detection and quantitation limit of 0.024% (3σ/slope) and 0.08% (10σ/slope), respectively. The specificity of the assay was evaluated with nonglycated hemoglobin (HbAo), showing that the impedance response remained unchanged over the concentration range of 10 to 20 g dL-1 HbAo. This demonstrated that the sensor system could be used to specifically distinguish HbA1c from HbAo. Moreover, the binding of HbA1c to the APBA-modified electrodes was reversible, providing a reusable sensing interface as well as showing a stable response after 4 weeks (96% of the initial response). When assaying normal (4.10%) and diabetic (8.36%) HbA1c levels (10 assays per day during a three-day period including a regeneration step after each assay), the overall assay reproducibility, expressed as relative standard error of the mean (n = 30), was 1.1%. The performance of the sensor system was also compared with a commercial method (n = 15) using patient-derived blood samples. A good agreement (Bland-Altman bias plot) and correlation (Passing-Bablok regression analysis) was demonstrated between the boronate-based affinity sensor and the standard method.


Assuntos
Técnicas Biossensoriais , Ácidos Borônicos/química , Impedância Elétrica , Hemoglobinas Glicadas/análise , Técnicas Biossensoriais/instrumentação , Eletrodos , Ouro/química , Humanos , Propriedades de Superfície
17.
Anal Biochem ; 515: 1-8, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27641112

RESUMO

Redox regulation is important for numerous processes in plant cells including abiotic stress, pathogen defence, tissue development, seed germination and programmed cell death. However, there are few methods allowing redox homeostasis to be addressed in whole plant cells, providing insight into the intact in vivo environment. An electrochemical redox assay that applies the menadione-ferricyanide double mediator is used to assess changes in the intracellular and extracellular redox environment in living aleurone layers of barley (Hordeum vulgare cv. Himalaya) grains, which respond to the phytohormones gibberellic acid and abscisic acid. Gibberellic acid is shown to elicit a mobilisation of electrons as detected by an increase in the reducing capacity of the aleurone layers. By taking advantage of the membrane-permeable menadione/menadiol redox pair to probe the membrane-impermeable ferricyanide/ferrocyanide redox pair, the mobilisation of electrons was dissected into an intracellular and an extracellular, plasma membrane-associated component. The intracellular and extracellular increases in reducing capacity were both suppressed when the aleurone layers were incubated with abscisic acid. By probing redox levels in intact plant tissue, the method provides a complementary approach to assays of reactive oxygen species and redox-related enzyme activities in tissue extracts.


Assuntos
Ácido Abscísico/metabolismo , Germinação/fisiologia , Giberelinas/metabolismo , Hordeum/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Sementes/metabolismo , Oxirredução
18.
Mater Sci Eng C Mater Biol Appl ; 61: 180-9, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26838839

RESUMO

Limitations in controlling scaffold architecture using traditional fabrication techniques are a problem when constructing engineered tissues/organs. Recently, integration of two pore architectures to generate dual-pore scaffolds with tailored physical properties has attracted wide attention in tissue engineering community. Such scaffolds features primary structured pores which can efficiently enhance nutrient/oxygen supply to the surrounding, in combination with secondary random pores, which give high surface area for cell adhesion and proliferation. Here, we present a new technique to fabricate dual-pore scaffolds for various tissue engineering applications where 3D printing of poly(vinyl alcohol) (PVA) mould is combined with salt leaching process. In this technique the sacrificial PVA mould, determining the structured pore architecture, was filled with salt crystals to define the random pore regions of the scaffold. After crosslinking the casted polymer the combined PVA-salt mould was dissolved in water. The technique has advantages over previously reported ones, such as automated assembly of the sacrificial mould, and precise control over pore architecture/dimensions by 3D printing parameters. In this study, polydimethylsiloxane and biodegradable poly(ϵ-caprolactone) were used for fabrication. However, we show that this technique is also suitable for other biocompatible/biodegradable polymers. Various physical and mechanical properties of the dual-pore scaffolds were compared with control scaffolds with either only structured or only random pores, fabricated using previously reported methods. The fabricated dual-pore scaffolds supported high cell density, due to the random pores, in combination with uniform cell distribution throughout the scaffold, and higher cell proliferation and viability due to efficient nutrient/oxygen transport through the structured pores. In conclusion, the described fabrication technique is rapid, inexpensive, scalable, and compatible with different polymers, making it suitable for engineering various large scale organs/tissues.


Assuntos
Teste de Materiais , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química , Células Hep G2 , Humanos
19.
Chem Commun (Camb) ; 51(97): 17313-6, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26462973

RESUMO

Study of the copper binding properties of metformin is important for revealing its mechanism of action as a first-line type-2 diabetes drug. A quantitative investigation of interactions between metformin and L-cysteine-copper complexes was performed. The results suggest that metformin could interact with biological copper, which plays a key role in mitochondrial function.

20.
Anal Bioanal Chem ; 407(18): 5287-97, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25956596

RESUMO

We propose a novel alternative approach to long-term glycaemic monitoring using eggshell membranes (ESMs) as a new immobilising platform for the selective label-free electrochemical sensing of glycated haemoglobin (HbA1c), a vital clinical index of the glycaemic status in diabetic individuals. Due to the unique features of a novel 3-aminophenylboronic acid-modified ESM, selective binding was obtained via cis-diol interactions. This newly developed device provides clinical applicability as an affinity membrane-based biosensor for the identification of HbA1c over a clinically relevant range (2.3 - 14 %) with a detection limit of 0.19%. The proposed membrane-based biosensor also exhibited good reproducibility. When analysing normal and abnormal HbA1c levels, the within-run coefficients of variation were 1.68 and 1.83%, respectively. The run-to-run coefficients of variation were 1.97 and 2.02%, respectively. These results demonstrated that this method achieved the precise and selective measurement of HbA1c. Compared with a commercial HbA1c kit, the results demonstrated excellent agreement between the techniques (n = 15), demonstrating the clinical applicability of this sensor for monitoring glycaemic control. Thus, this low-cost sensing platform using the proposed membrane-based biosensor is ideal for point-of-care diagnostics.


Assuntos
Ácidos Borônicos/química , Espectroscopia Dielétrica/instrumentação , Casca de Ovo/química , Hemoglobinas Glicadas/análise , Membranas/química , Animais , Técnicas Biossensoriais/instrumentação , Galinhas , Impedância Elétrica , Desenho de Equipamento , Humanos , Limite de Detecção , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...