Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612524

RESUMO

The interaction between extracellular vesicles (EVs) and SARS-CoV-2, the virus causing COVID-19, especially in people with cystic fibrosis (PwCF) is insufficiently studied. EVs are small membrane-bound particles involved in cell-cell communications in different physiological and pathological conditions, including inflammation and infection. The CF airway cells release EVs that differ from those released by healthy cells and may play an intriguing role in regulating the inflammatory response to SARS-CoV-2. On the one hand, EVs may activate neutrophils and exacerbate inflammation. On the other hand, EVs may block IL-6, a pro-inflammatory cytokine associated with severe COVID-19, and protect PwCF from adverse outcomes. EVs are regulated by TGF-ß signaling, essential in different disease states, including COVID-19. Here, we review the knowledge, identify the gaps in understanding, and suggest future research directions to elucidate the role of EVs in PwCF during COVID-19.


Assuntos
COVID-19 , Fibrose Cística , Vesículas Extracelulares , Humanos , Fibrose Cística/complicações , SARS-CoV-2 , Inflamação
2.
J Innate Immun ; 15(1): 629-646, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37579743

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for COVID-19, utilizes receptor binding domain (RBD) of spike glycoprotein to interact with angiotensin (Ang)-converting enzyme 2 (ACE2). Altering ACE2 levels may affect entry of SARS-CoV-2 and recovery from COVID-19. Decreased cell surface density of ACE2 leads to increased local levels of Ang II and may contribute to mortality resulting from acute lung injury and fibrosis during COVID-19. Studies published early during the COVID-19 pandemic reported that people with cystic fibrosis (PwCF) had milder symptoms, compared to people without CF. This finding was attributed to elevated ACE2 levels and/or treatment with the high efficiency CFTR modulators. Subsequent studies did not confirm these findings reporting variable effects of CFTR gene mutations on ACE2 levels. Transforming growth factor (TGF)-ß signaling is essential during SARS-CoV-2 infection and dominates the chronic immune response in severe COVID-19, leading to pulmonary fibrosis. TGF-ß1 is a gene modifier associated with more severe lung disease in PwCF but its effects on the COVID-19 course in PwCF is unknown. To understand whether TGF-ß1 affects ACE2 levels in the airway, we examined miRNAs and their gene targets affecting SARS-CoV-2 pathogenesis in response to TGF-ß1. Small RNAseq and micro(mi)RNA profiling identified pathways uniquely affected by TGF-ß1, including those associated with SARS-CoV-2 invasion, replication, and the host immune responses. TGF-ß1 inhibited ACE2 expression by miR-136-3p and miR-369-5p mediated mechanism in CF and non-CF bronchial epithelial cells. ACE2 levels were higher in two bronchial epithelial cell models expressing the most common CF-causing mutation in CFTR gene F508del, compared to controls without the mutation. After TGF-ß1 treatment, ACE2 protein levels were still higher in CF, compared to non-CF cells. TGF-ß1 prevented the modulator-mediated rescue of F508del-CFTR function while the modulators did not prevent the TGF-ß1 inhibition of ACE2 levels. Finally, TGF-ß1 reduced the interaction between ACE2 and the recombinant spike RBD by lowering ACE2 levels and its binding to RBD. Our data demonstrate novel mechanism whereby TGF-ß1 inhibition of ACE2 in CF and non-CF bronchial epithelial cells may modulate SARS-CoV-2 pathogenicity and COVID-19 severity. By reducing ACE2 levels, TGF-ß1 may decrease entry of SARS-CoV-2 into the host cells while hindering the recovery from COVID-19 due to loss of the anti-inflammatory and regenerative effects of ACE2. The above outcomes may be modulated by other, miRNA-mediated effects exerted by TGF-ß1 on the host immune responses, leading to a complex and yet incompletely understood circuitry.


Assuntos
COVID-19 , Fibrose Cística , MicroRNAs , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , MicroRNAs/genética , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Pandemias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA