Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Evol Biol ; 37(2): 131-140, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38366252

RESUMO

The highly invasive Argentine ant (Linepithema humile) started its colonisation from the species' native range in South America approximately 150 years ago and has since become one of the major pests in the world. We investigated how the shifts into new ranges have affected the evolution of Argentine ants' immune genes. To the best of our knowledge, this is the first broadscale population genetic study focusing on ants' immune genes. We analysed comprehensive targeted-seq data of immune and non-immune genes containing 174 genes from 18 Argentine ant supercolonies covering the species' native and introduced ranges. We predicted that the immune gene evolution of introduced supercolonies differs from that of the native supercolonies and proposed two different, non-mutually exclusive hypotheses for this: 1) the enemy release hypothesis and 2) the higher pathogen pressure hypothesis - both of which seem to explain the observed evolutionary patterns on their behalf. Our results show that the introduced supercolonies were targeted by weaker selection than natives, but positive selection was evident among supercolonies of both ranges. Moreover, in some cases, such as the antiviral RNAi genes, introduced range supercolonies harboured a higher proportion of positively selected genes than natives. This observation was striking, knowing the recent demographic history and the detected generally lower selection efficacy of introduced supercolonies. In conclusion, it is evident that pathogen pressure is ubiquitous and strongly affects the immune gene evolution in Argentine ants.


Assuntos
Formigas , Animais , Formigas/genética , Evolução Molecular , América do Sul , Espécies Introduzidas
2.
Biol Lett ; 19(11): 20230415, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37964577

RESUMO

The modulation of nutritional intake by animals to combat pathogens is a behaviour that is receiving increasing attention. Ant studies using isolated compounds or nutrients in artificial diets have revealed a lot of the dynamics of the behaviour, but natural sources of medicine are yet to be confirmed. Here we explored whether Formica fusca ants exposed to a fungal pathogen can use an artificial diet containing foods spiked with different concentrations of crushed aphids for a medicinal benefit. We show that pathogen exposed colonies adjusted their diet to include more aphid supplemented foods during the acute phase of the infection, reducing the mortality caused by the disease. However, the benefit was only attained when having access to a varied diet, suggesting that while aphids contain nutrients or compounds beneficial against infection, it is a part of a complex nutritional system where costs and benefits of compounds and nutrients need to be moderated.


Assuntos
Formigas , Afídeos , Micoses , Animais , Alimentos Fortificados
3.
Sci Rep ; 13(1): 21076, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030666

RESUMO

Collaboration between and within management levels and involvement of local communities (co-management) increases sustainable management of natural resources. In Finland, moose (Alces alces) are harvested by hunting groups within a co-management system, providing meat and social benefits. We computed the 14-year change in moose harvest (2007-2020) for 4320 hunting groups. Moose harvest declined on average 1.1% per year, but with substantial variation in moose harvest changes between the hunting groups. We extracted information describing the collaboration between the hunting groups, their democratic status as well as leader dynamics, and the year of establishment. A hunting group's moose harvest was more stable (i.e. declined less) when the hunting group was (1) established a longer time ago; (2), had more changes in leadership over time, but did not depend on collaboration with other local hunting groups (in terms of jointly holding moose hunting licenses), whether the hunting group was a registered society (presumed to be more democratic than a non-registered one) or had consecutive leaders that shared a surname (presumed to be related). We conclude that encouraging resource users' early establishment in groups and groups' long-term persistence and promoting democratic leadership roles improves stable benefits from a natural resource in a co-management system.


Assuntos
Cervos , Caça , Animais , Finlândia , Carne , Recursos Naturais , Humanos
4.
Mol Biol Evol ; 40(8)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37565532

RESUMO

The masking theory states that genes expressed in a haploid stage will be under more efficient selection. In contrast, selection will be less efficient in genes expressed in a diploid stage, where the fitness effects of recessive deleterious or beneficial mutations can be hidden from selection in heterozygous form. This difference can influence several evolutionary processes such as the maintenance of genetic variation, adaptation rate, and genetic load. Masking theory expectations have been confirmed in single-cell haploid and diploid organisms. However, in multicellular organisms, such as plants, the effects of haploid selection are not clear-cut. In plants, the great majority of studies indicating haploid selection have been carried out using male haploid tissues in angiosperms. Hence, evidence in these systems is confounded with the effects of sexual selection and intraspecific competition. Evidence from other plant groups is scarce, and results show no support for the masking theory. Here, we have used a gymnosperm Scots pine megagametophyte, a maternally derived seed haploid tissue, and four diploid tissues to test the strength of purifying selection on a set of genes with tissue-specific expression. By using targeted resequencing data of those genes, we obtained estimates of genetic diversity, the site frequency spectrum of 0-fold and 4-fold sites, and inferred the distribution of fitness effects of new mutations in haploid and diploid tissue-specific genes. Our results show that purifying selection is stronger for tissue-specific genes expressed in the haploid megagametophyte tissue and that this signal of strong selection is not an artifact driven by high expression levels.


Assuntos
Evolução Biológica , Seleção Genética , Haploidia , Mutação , Diploide , Plantas
5.
Proc Biol Sci ; 290(2004): 20230861, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37554034

RESUMO

Cooperative breeding entails conflicts over reproductive shares that may be settled in different ways. In ants, where several queens simultaneously reproduce in a colony, both queens and workers may influence the reproductive apportionment and offspring quality. Queens may vary in their intrinsic fecundity, which may influence the size of the worker entourage attending individual queens, and this may eventually dictate the reproductive output of a queen. We tested whether the reproductive success of queens is affected by the size of their worker entourage, their fecundity at the onset of the reproductive season, and whether the queen cuticular hydrocarbon profile carries information on fecundity. We show that in the ant Formica fusca both queen fecundity and egg hatching success increase with the size of their entourage, and that newly hatched larvae produced by initially highly fecund queens are smaller. Furthermore, higher relatedness among workers increased queen fecundity. Finally, the queens that received a large worker entourage differed in the cuticular chemistry from those that received a small worker entourage. Our results thus show that workers play a pivotal role in determining queen fitness, that high intracolony relatedness among workers enhances the overall reproductive output in the colony, and that queen fecundity is reflected in their cuticular hydrocarbon profile.


Assuntos
Formigas , Animais , Fertilidade , Reprodução , Larva , Hidrocarbonetos
6.
Philos Trans R Soc Lond B Biol Sci ; 378(1884): 20220142, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37427464

RESUMO

For many animals, nests are essential for reproductive success. Nesting individuals need to carry out a range of potentially challenging tasks, from selecting an appropriate site and choosing suitable materials to constructing the nest and defending it against competitors, parasites and predators. Given the high fitness stakes involved, and the diverse impacts both the abiotic and social environment can have on nesting success, we might expect cognition to facilitate nesting efforts. This should be especially true under variable environmental conditions, including those changing due to anthropogenic impacts. Here, we review, across a wide range of taxa, evidence linking cognition to nesting behaviours, including selection of nesting sites and materials, nest construction, and nest defence. We also discuss how different cognitive abilities may increase an individual's nesting success. Finally, we highlight how combining experimental and comparative research can uncover the links between cognitive abilities, nesting behaviours and the evolutionary pathways that may have led to the associations between them. In so doing, the review highlights current knowledge gaps and provides suggestions for future research. This article is part of the theme issue 'The evolutionary ecology of nests: a cross-taxon approach'.


Assuntos
Ecologia , Comportamento de Nidação , Animais , Evolução Biológica , Reprodução , Cognição
7.
Behav Ecol ; 34(3): 340-345, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37192926

RESUMO

Reproductive sharing in animal groups with multiple breeders, insects and vertebrates alike, contains elements of both conflict and cooperation, and depends on both relatedness between co-breeders, as well as their internal and external conditions. We studied how queens of the ant Formica fusca adjust their reproductive efforts in response to experimental manipulations of the kin competition regime in their nest. Queens respond to the presence of competitors by increasing their egg laying efforts, but only if the competitors are highly fecund and distantly related. Such a mechanism is likely to decrease harmful competition among close relatives. We demonstrate that queens of Formica fusca fine-tune their cooperative breeding behaviors in response to kinship and fecundity of others in a remarkably precise and flexible manner.

8.
Front Microbiol ; 14: 1044286, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213490

RESUMO

Introduction: Insects share intimate relationships with microbes that play important roles in their biology. Yet our understanding of how host-bound microbial communities assemble and perpetuate over evolutionary time is limited. Ants host a wide range of microbes with diverse functions and are an emerging model for studying the evolution of insect microbiomes. Here, we ask whether phylogenetically related ant species have formed distinct and stable microbiomes. Methods: To answer this question, we investigated the microbial communities associated with queens of 14 Formica species from five clades, using deep coverage 16S rRNA amplicon sequencing. Results: We reveal that Formica species and clades harbor highly defined microbial communities that are dominated by four bacteria genera: Wolbachia, Lactobacillus, Liliensternia, and Spiroplasma. Our analysis reveals that the composition of Formica microbiomes mirrors the phylogeny of the host, i.e., phylosymbiosis, in that related hosts harbor more similar microbial communities. In addition, we find there are significant correlations between microbe co-occurrences. Discussion: Our results demonstrate Formica ants carry microbial communities that recapitulate the phylogeny of their hosts. Our data suggests that the co-occurrence of different bacteria genera may at least in part be due to synergistic and antagonistic interactions between microbes. Additional factors potentially contributing to the phylosymbiotic signal are discussed, including host phylogenetic relatedness, host-microbe genetic compatibility, modes of transmission, and similarities in host ecologies (e.g., diets). Overall, our results support the growing body of evidence that microbial community composition closely depends on the phylogeny of their hosts, despite bacteria having diverse modes of transmission and localization within the host.

9.
ISME J ; 16(9): 2114-2122, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35701539

RESUMO

Ants are among the most successful organisms on Earth. It has been suggested that forming symbioses with nutrient-supplementing microbes may have contributed to their success, by allowing ants to invade otherwise inaccessible niches. However, it is unclear whether ants have evolved symbioses repeatedly to overcome the same nutrient limitations. Here, we address this question by comparing the independently evolved symbioses in Camponotus, Plagiolepis, Formica and Cardiocondyla ants. Our analysis reveals the only metabolic function consistently retained in all of the symbiont genomes is the capacity to synthesise tyrosine. We also show that in certain multi-queen lineages that have co-diversified with their symbiont for millions of years, only a fraction of queens carry the symbiont, suggesting ants differ in their colony-level reliance on symbiont-derived resources. Our results imply that symbioses can arise to solve common problems, but hosts may differ in their dependence on symbionts, highlighting the evolutionary forces influencing the persistence of long-term endosymbiotic mutualisms.


Assuntos
Formigas , Animais , Filogenia , Simbiose
10.
Mol Ecol ; 31(12): 3416-3431, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35460311

RESUMO

The application of demographic history modelling and inference to the study of divergence between species has become a cornerstone of speciation genomics. Speciation histories are usually reconstructed by analysing single populations from each species, assuming that the inferred population history represents the actual speciation history. However, this assumption may not be met when species diverge with gene flow, for example, when secondary contact may be confined to specific geographic regions. Here, we tested whether divergence histories inferred from heterospecific populations may vary depending on their geographic locations, using the two wood ant species Formica polyctena and F. aquilonia. We performed whole-genome resequencing of 20 individuals sampled in multiple locations across the European ranges of both species. Then, we reconstructed the histories of distinct heterospecific population pairs using a coalescent-based approach. Our analyses always supported a scenario of divergence with gene flow, suggesting that divergence started in the Pleistocene (c. 500 kya) and occurred with continuous asymmetrical gene flow from F. aquilonia to F. polyctena until a recent time, when migration became negligible (2-19 kya). However, we found support for contemporary gene flow in a sympatric pair from Finland, where the species hybridise, but no signature of recent bidirectional gene flow elsewhere. Overall, our results suggest that divergence histories reconstructed from a few individuals may be applicable at the species level. Nonetheless, the geographical context of populations chosen to represent their species should be taken into account, as it may affect estimates of migration rates between species when gene flow is spatially heterogeneous.


Assuntos
Formigas , Fluxo Gênico , Animais , Formigas/genética , Especiação Genética , Genoma , Humanos , Simpatria
11.
Sci Rep ; 12(1): 6425, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440705

RESUMO

It is well known that green urban commons enhance mental and physical well-being and improve local biodiversity. We aim to investigate how these outcomes are related in an urban system and which variables are associated with better outcomes. We model the outcomes of an urban common-box gardening-by applying the Social-Ecological Systems (SES) framework. We expand the SES framework by analyzing it from the perspective of social evolution theory. The system was studied empirically through field inventories and questionnaires and modeled quantitatively by Structural Equation Modeling (SEM). This method offers powerful statistical models of complex social-ecological systems. Our results show that objectively evaluated ecological outcomes and self-perceived outcomes are decoupled: gardening groups that successfully govern the natural resource ecologically do not necessarily report many social, ecological, or individual benefits, and vice versa. Social capital, box location, gardener concerns, and starting year influenced the changes in the outcomes. In addition, the positive association of frequent interactions with higher self-perceived outcomes, and lack of such association with relatedness of group members suggests that reciprocity rather than kin selection explains cooperation. Our findings exemplify the importance of understanding natural resource systems at a very low "grassroot" level.


Assuntos
Jardinagem , Jardins , Ecossistema , Análise de Classes Latentes , Meio Social
12.
Front Insect Sci ; 2: 870971, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38468809

RESUMO

Ants face unique challenges regarding pathogens, as the sociality which has allowed them to form large and complex colonies also raises the potential for transmission of disease within them. To cope with the threat of pathogens, ants have developed a variety of behavioral and physiological strategies. One of these strategies is self-medication, in which animals use biologically active compounds to combat pathogens in a way which would be harmful in the absence of infection. Formica fusca are the only ants that have previously been shown to successfully self-medicate against an active infection caused by a fungal pathogen by supplementing their diet with food containing hydrogen peroxide. Here, we build on that research by investigating how the prevalence of disease in colonies of F. fusca affects the strength of the self-medication response. We exposed either half of the workers of each colony or all of them to a fungal pathogen and offered them different combinations of diets. We see that workers of F. fusca engage in self-medication behavior even if exposed to a low lethal dose of a pathogen, and that the strength of that response is affected by the prevalence of the disease in the colonies. We also saw that the infection status of the individual foragers did not significantly affect their decision to forage on either control food or medicinal food as uninfected workers were also foraging on hydrogen peroxide food, which opens up the possibility of kin medication in partially infected colonies. Our results further affirm the ability of ants to self-medicate against fungal pathogens, shed new light on plasticity of self-medication and raise new questions to be investigated on the role self-medication has in social immunity.

14.
Proc Biol Sci ; 287(1928): 20200635, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32517607

RESUMO

Colonies of insects such as ants and honeybees are commonly viewed as 'superorganisms', with division of labour between reproductive 'germline-like' queens and males and 'somatic' workers. On this view, properties of the superorganismal colony are comparable with those of solitary organisms to such an extent that the colony itself can be viewed as a unit analogous to an organism. Thus, the concept of a superorganism can be useful as a guide to thinking about life history and allocation traits of colonies as a whole. A pattern that seems to reoccur in insects with superorganismal societies is size dimorphism between queens and males, where queens tend to be larger than males. It has been proposed that this is analogous to the phenomenon of anisogamy at the level of gametes in organisms with separate sexes; more specifically, it is suggested that this caste dimorphism may have evolved via similar selection pressures as gamete dimorphism arises in the 'gamete competition' theory for the evolution of anisogamy. In this analogy, queens are analogous to female gametes, males are analogous to male gametes, and colony survival is analogous to zygote survival in gamete competition theory. Here, we explore if this question can be taken beyond an analogy, and whether a mathematical model at the superorganism level, analogous to gamete competition at the organism level, may explain the caste dimorphism seen in superorganismal insects. We find that the central theoretical idea holds, but that there are also significant differences between the way this generalized 'propagule competition' theory operates at the levels of solitary organisms and superorganisms. In particular, we find that the theory can explain superorganismal caste dimorphism, but compared with anisogamy evolution, a central coevolutionary link is broken, making the requirements for the theory to work less stringent than those found for the evolution of anisogamy.


Assuntos
Insetos/fisiologia , Animais , Formigas , Abelhas , Feminino , Células Germinativas , Masculino , Modelos Biológicos , Óvulo , Reprodução , Caracteres Sexuais
15.
Ecol Evol ; 10(8): 3671-3685, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32313626

RESUMO

Understanding how social groups function requires studies on how individuals move across the landscape and interact with each other. Ant supercolonies are extreme cooperative units that may consist of thousands of interconnected nests, and their individuals cooperate over large spatial scales. However, the inner structure of suggested supercolonial (or unicolonial) societies has rarely been extensively studied using both genetic and behavioral analyses. We describe a dense supercolony-like aggregation of more than 1,300 nests of the ant Formica (Coptoformica) pressilabris. We performed aggression assays and found that, while aggression levels were generally low, there was some aggression within the assumed supercolony. The occurrence of aggression increased with distance from the focal nest, in accordance with the genetically viscous population structure we observe by using 10 DNA microsatellite markers. However, the aggressive interactions do not follow any clear pattern that would allow specifying colony borders within the area. The genetic data indicate limited gene flow within and away from the supercolony. Our results show that a Formica supercolony is not necessarily a single unit but can be a more fluid mosaic of aggressive and amicable interactions instead, highlighting the need to study internest interactions in detail when describing supercolonies.

16.
Philos Trans R Soc Lond B Biol Sci ; 375(1797): 20190366, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32146886

RESUMO

The diversity of genetic and non-genetic processes that make offspring resemble their parents are increasingly well understood. In addition to genetic inheritance, parent-offspring similarity is affected by epigenetic, behavioural and cultural mechanisms that collectively can be referred to as non-genetic inheritance. Given the generality of the Price equation as a description of evolutionary change, is it not surprising that the Price equation has been adopted to model the evolutionary implications of non-genetic inheritance. In this paper, we briefly introduce the heredity perspectives on which those models rely, discuss the extent to which these perspectives make different assumptions and place different emphases on the roles of heredity and development in evolution, and the types of empirical research programmes they motivate. The existence of multiple perspectives and explanatory aims highlight, on the one hand, the versatility of the Price equation and, on the other hand, the importance of understanding how heredity and development can be conceptualized in evolutionary studies. This article is part of the theme issue 'Fifty years of the Price equation'.


Assuntos
Evolução Biológica , Genética Populacional/métodos , Modelos Genéticos , Seleção Genética , Epistasia Genética , Hereditariedade
18.
Curr Biol ; 30(2): 304-311.e4, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31902719

RESUMO

Supergenes, clusters of tightly linked genes, play a key role in the evolution of complex adaptive variation [1, 2]. Although supergenes have been identified in many species, we lack an understanding of their origin, evolution, and persistence [3]. Here, we uncover 20-40 Ma of evolutionary history of a supergene associated with polymorphic social organization in Formica ants [4]. We show that five Formica species exhibit homologous divergent haplotypes spanning 11 Mbp on chromosome 3. Despite the supergene's size, only 142 single nucleotide polymorphisms (SNPs) consistently distinguish alternative supergene haplotypes across all five species. These conserved trans-species SNPs are localized in a small number of disjunct clusters distributed across the supergene. This unexpected pattern of divergence indicates that the Formica supergene does not follow standard models of sex chromosome evolution, in which distinct evolutionary strata reflect an expanding region of suppressed recombination [5]. We propose an alternative "eroded strata model" in which clusters of conserved trans-species SNPs represent functionally important areas maintained by selection in the face of rare recombination between ancestral haplotypes. The comparison of whole-genome sequences across 10 additional Formica species reveals that the most conserved region of the supergene contains a transcription factor essential for motor neuron development in Drosophila [6]. The discovery that a very small portion of this large and ancient supergene harbors conserved trans-species SNPs linked to colony social organization suggests that the ancestral haplotypes have been eroded by recombination, with selection preserving differentiation at one or a few genes generating alternative social organization.


Assuntos
Formigas/genética , Proteínas de Insetos/genética , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genética , Animais , Haplótipos , Proteínas de Insetos/metabolismo , Cromossomos Sexuais/genética , Fatores de Transcrição/metabolismo
19.
J Biosci ; 44(4)2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31502584

RESUMO

The role of genetic relatedness in social evolution has recently come under critical attention. These arguments are here critically analyzed, both theoretically and empirically. It is argued that when the conceptual structure of the theory of natural selection is carefully taken into account, genetic relatedness can be seen to play an indispensable role in the evolution of both facultative and advanced eusociality. Although reviewing the empirical evidence concerning the evolution of eusociality reveals that relatedness does not play a role in the initial appearance of helper phenotypes, this follows simply from the fact that natural selection - of which relatedness is a necessary component - does not play a causal role in the origin of any traits. Further, separating two logically distinct elements of causal explanation - necessity and sufficiency - explains why the debate lingers on: although relatedness plays a necessary role in the evolution of helping and advanced eusociality, relatedness alone is not sufficient for their appearance. Therefore, if the relatedness variable in a given data set is held at a uniformly high value, then it indeed may turn out that other factors occupy a more prominent role. However, this does not change the fact that high relatedness functions as a necessary background condition for the evolution of advanced eusociality.


Assuntos
Comportamento Animal/fisiologia , Aptidão Genética/fisiologia , Insetos/fisiologia , Seleção Genética/genética , Animais , Aptidão Genética/genética , Insetos/genética , Reprodução/genética , Reprodução/fisiologia , Seleção Genética/fisiologia , Comportamento Social , Sociobiologia
20.
Evol Lett ; 3(3): 263-270, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31171982

RESUMO

Evolution of altruistic behavior was a hurdle for the logic of Darwinian evolution. Soon after Hamilton formalized the concept of inclusive fitness, which explains how altruism can evolve, he suggested that the high sororal relatedness brought by haplodiploidy could be why Hymenopterans have a high prevalence in eusocial species, and why helpers in Hymenoptera are always female. Later it was noted that in order to capitalize on the high sororal relatedness, helpers would need to direct help toward sisters, and this would bias the population sex ratio. Under a 1:3 males:females sex ratio, the inclusive fitness valuation a female places on her sister, brother, and an own offspring are equal-apparently removing the benefit of helping over independent reproduction. Based on this argumentation, haplodiploidy hypothesis has been considered a red herring. However, here we show that when population sex ratio, cost of altruism, and population growth rate are considered together, haplodiploidy does promote female helping even with female-biased sex ratio, due the lowered cost of altruism in such populations. Our analysis highlights the need to re-evaluate the role of haplodiploidy in the evolution of helping, and the importance of fully exploring the model assumptions when comparing interactions of population sex ratios and social behaviors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...