Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 197(12): 2027-35, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25845845

RESUMO

UNLABELLED: Acinetobacter baumannii is a Gram-negative bacterial pathogen notorious for causing serious nosocomial infections that resist antibiotic therapy. Research to identify factors responsible for the pathogen's success has been limited by the resources available for genome-scale experimental studies. This report describes the development of several such resources for A. baumannii strain AB5075, a recently characterized wound isolate that is multidrug resistant and displays robust virulence in animal models. We report the completion and annotation of the genome sequence, the construction of a comprehensive ordered transposon mutant library, the extension of high-coverage transposon mutant pool sequencing (Tn-seq) to the strain, and the identification of the genes essential for growth on nutrient-rich agar. These resources should facilitate large-scale genetic analysis of virulence, resistance, and other clinically relevant traits that make A. baumannii a formidable public health threat. IMPORTANCE: Acinetobacter baumannii is one of six bacterial pathogens primarily responsible for antibiotic-resistant infections that have become the scourge of health care facilities worldwide. Eliminating such infections requires a deeper understanding of the factors that enable the pathogen to persist in hospital environments, establish infections, and resist antibiotics. We present a set of resources that should accelerate genome-scale genetic characterization of these traits for a reference isolate of A. baumannii that is highly virulent and representative of current outbreak strains.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/genética , Doenças Transmissíveis Emergentes/microbiologia , Genoma Bacteriano , Infecções por Acinetobacter/epidemiologia , Acinetobacter baumannii/classificação , Doenças Transmissíveis Emergentes/epidemiologia , Elementos de DNA Transponíveis/genética , DNA Bacteriano/genética , Biblioteca Gênica , Humanos , Mutação , Plasmídeos
2.
Mol Microbiol ; 73(3): 466-81, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19627500

RESUMO

The TonB system of Escherichia coli (TonB/ExbB/ExbD) transduces the protonmotive force (pmf) of the cytoplasmic membrane to drive active transport by high-affinity outer membrane transporters. In this study, chromosomally encoded ExbD formed formaldehyde-linked complexes with TonB, ExbB and itself (homodimers) in vivo. Pmf was required for detectable cross-linking between TonB-ExbD periplasmic domains. Consistent with that observation, the presence of inactivating transmembrane domain mutations ExbD(D25N) or TonB(H20A) also prevented efficient formaldehyde cross-linking between ExbD and TonB. A specific site of periplasmic interaction occurred between ExbD(A92C) and TonB(A150C) and required functional transmembrane domains in both proteins. Conversely, neither TonB, ExbB nor pmf were required for ExbD dimer formation. These data suggest two possible models where either dynamic complex formation occurred through transmembrane domains or the transmembrane domains of ExbD and TonB configure their respective periplasmic domains. Analysis of T7-tagged ExbD with anti-ExbD antibodies revealed that a T7 tag was responsible both for our previous failure to detect T7-ExbD-ExbB and T7-ExbD-TonB formaldehyde-linked complexes and for the concomitant artefactual appearance of T7-ExbD trimers.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Membrana/metabolismo , Força Próton-Motriz , Substituição de Aminoácidos , Reagentes de Ligações Cruzadas , Dimerização , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Formaldeído , Proteínas de Membrana/genética , Periplasma/metabolismo
3.
Appl Environ Microbiol ; 73(23): 7622-8, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17933944

RESUMO

Photorhabdus luminescens is a gram-negative insect pathogen that enters the hemocoel of infected hosts and produces a number of secreted proteins that promote colonization and subsequent death of the insect. In initial studies to determine the exact role of individual secreted proteins in insect pathogenesis, concentrated culture supernatants from various P. luminescens strains were injected into the tobacco hornworm Manduca sexta. Culture supernatants from P. luminescens TT01, the genome-sequenced strain, stimulated a rapid melanization reaction in M. sexta. Comparison of the profiles of secreted proteins from the various Photorhabdus strains revealed a single protein of approximately 37 kDa that was significantly overrepresented in the TT01 culture supernatant. This protein was purified by DEAE ion-exchange and Superdex 75 gel filtration chromatography and identified by matrix-assisted laser desorption ionization-time of flight analysis as the product of the TT01 gene plu1382 (NCBI accession number NC_005126); we refer to it here as PrtS. PrtS is a member of the M4 metalloprotease family. Injection of PrtS into larvae of M. sexta and Galleria mellonella and into adult Drosophila melanogaster and D. melanogaster melanization mutants (Bc) confirmed that the purified protein induced the melanization reaction. The prtS gene was transcribed by P. luminescens injected into M. sexta before death of the insect, suggesting that the protein was produced during infection. The exact function of this protease during infection is not clear. The bacteria might survive inside the insect despite the melanization process, or it might be that the bacterium is specifically activating melanization in an attempt to circumvent this innate immune response.


Assuntos
Proteínas de Bactérias/metabolismo , Manduca/microbiologia , Melaninas/metabolismo , Metaloproteases/metabolismo , Photorhabdus/enzimologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Western Blotting , Meios de Cultivo Condicionados/farmacologia , Eletroforese em Gel de Poliacrilamida , Larva/efeitos dos fármacos , Larva/metabolismo , Larva/microbiologia , Manduca/metabolismo , Metaloproteases/genética , Metaloproteases/farmacologia , Dados de Sequência Molecular , Photorhabdus/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
4.
Mol Microbiol ; 64(5): 1214-27, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17542916

RESUMO

Plague, or the Black Death, is a zoonotic disease that is spread from mammal to mammal by fleas. This mode of transmission demands that the causative agent of this disease, Yersinia pestis, is able to survive and multiply in both mammals and insects. In recent years the complete genome sequence of a number of Y. pestis strains have been determined. This sequence information indicates that Y. pestis contains a cluster of genes with homology to insecticidal toxin encoding genes of the insect pathogen Photorhabdus luminescens. Here we demonstrate that Y. pestis KIM strains produced the encoded proteins. Production of the locus-encoded proteins was dependent on a gene (yitR) encoding a member of the LysR family of transcriptional activators. Evidence suggests the proteins are type III secretion substrates. N terminal amino acids (100 to 367) of each protein fused to an epitope tag were secreted by the virulence plasmid type III secretion type. A fusion protein comprised of the N-terminus of YipB and the enzymatic active component of Bordetella pertussis adenylate cyclase (Cya) was translocated into both mammalian and insect cells. In conclusion, a new class of Y. pestis type III secreted and translocated proteins has been identified. We hypothesize that these proteins function to promote transmission of and infection by Y. pestis.


Assuntos
Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Yersinia pestis/genética , Yersinia pestis/patogenicidade , Adenilil Ciclases/química , Adenilil Ciclases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Sítios de Ligação , Bordetella pertussis/enzimologia , Sequência Conservada , Epitopos , Genes Bacterianos , Genes de Insetos , Células HeLa , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Photorhabdus/genética , Photorhabdus/patogenicidade , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Homologia de Sequência de Aminoácidos , Spodoptera/metabolismo , Spodoptera/microbiologia , Especificidade por Substrato , Transativadores/genética , Yersinia pestis/classificação , Yersinia pestis/metabolismo
5.
J Bacteriol ; 184(18): 5170-3, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12193634

RESUMO

ExbB and ExbD proteins are part of the TonB-dependent energy transduction system and are encoded by the exb operon in Escherichia coli. TonB, the energy transducer, appears to go through a cycle during energy transduction, with the absence of both ExbB and ExbD creating blocks at two points: (i) in the inability of TonB to respond to the cytoplasmic membrane proton motive force and (ii) in the conversion of TonB from a high-affinity outer membrane association to a high-affinity cytoplasmic membrane association. The recent observation that ExbB exists in 3.5-fold molar excess relative to the molarity of ExbD in E. coli suggests the possibility of two types of complexes, those containing both ExbB and ExbD and those containing only ExbB. Such distinct complexes might individually manifest one of the two activities described above. In the present study this hypothesis was tested and rejected. Specifically, both ExbB and ExbD were found to be required for TonB to conformationally respond to proton motive force. Both ExbB and ExbD were also required for association of TonB with the cytoplasmic membrane. Together, these results support an alternative model where all of the ExbB in the cell occurs in complex with all of the ExbD in the cell. Based on recently determined cellular ratios of TonB system proteins, these results suggest the existence of a cytoplasmic membrane complex that may be as large as 520 kDa.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Proteínas de Membrana/metabolismo , Força Próton-Motriz/fisiologia , Transdução de Sinais/fisiologia , Transporte Biológico , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Periplasma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...