Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 9(3): e0133123, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38376262

RESUMO

The ecological impacts of long-term (press) disturbance on mechanisms regulating the relative abundance (i.e., commonness or rarity) and temporal dynamics of species within a community remain largely unknown. This is particularly true for the functionally important arbuscular mycorrhizal (AM) fungi; obligate plant-root endosymbionts that colonize more than two-thirds of terrestrial plant species. Here, we use high-resolution amplicon sequencing to examine how AM fungal communities in a specific extreme ecosystem-mofettes or natural CO2 springs caused by geological CO2 exhalations-are affected by long-term stress. We found that in mofettes, specific and temporally stable communities form as a subset of the local metacommunity. These communities are less diverse and dominated by adapted, "stress tolerant" taxa. Those taxa are rare in control locations and more benign environments worldwide, but show a stable temporal pattern in the extreme sites, consistently dominating the communities in grassland mofettes. This pattern of lower diversity and high dominance of specific taxa has been confirmed as relatively stable over several sampling years and is independently observed across multiple geographic locations (mofettes in different countries). This study implies that the response of soil microbial community composition to long-term stress is relatively predictable, which can also reflect the community response to other anthropogenic stressors (e.g., heavy metal pollution or land use change). Moreover, as AM fungi are functionally differentiated, with different taxa providing different benefits to host plants, changes in community structure in response to long-term environmental change have the potential to impact terrestrial plant communities and their productivity.IMPORTANCEArbuscular mycorrhizal (AM) fungi form symbiotic relationships with more than two-thirds of plant species. In return for using plant carbon as their sole energy source, AM fungi improve plant mineral supply, water balance, and protection against pathogens. This work demonstrates the importance of long-term experiments to understand the effects of long-term environmental change and long-term disturbance on terrestrial ecosystems. We demonstrated a consistent response of the AM fungal community to a long-term stress, with lower diversity and a less variable AM fungal community over time under stress conditions compared to the surrounding controls. We have also identified, for the first time, a suite of AM fungal taxa that are consistently observed across broad geographic scales in stressed and anthropogenically heavily influenced ecosystems. This is critical because global environmental change in terrestrial ecosystems requires an integrative approach that considers both above- and below-ground changes and examines patterns over a longer geographic and temporal scale, rather than just single sampling events.


Assuntos
Micorrizas , Micorrizas/genética , Ecossistema , Dióxido de Carbono/farmacologia , Microbiologia do Solo , Plantas/microbiologia , Ambientes Extremos
2.
Microb Genom ; 8(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36301081

RESUMO

Bioremediation of metaldehyde from drinking water using metaldehyde-degrading strains has recently emerged as a promising alternative. Whole-genome sequencing was used to obtain full genomes for metaldehyde degraders Acinetobacter calcoaceticus E1 and Sphingobium CMET-H. For the former, the genetic context of the metaldehyde-degrading genes had not been explored, while for the latter, none of the degrading genes themselves had been identified. In A. calcoaceticus E1, IS91 and IS6-family insertion sequences (ISs) were found surrounding the metaldehyde-degrading gene cluster located in plasmid pAME76. This cluster was located in closely-related plasmids and associated to identical ISs in most metaldehyde-degrading ß- and γ-Proteobacteria, indicating horizontal gene transfer (HGT). For Sphingobium CMET-H, sequence analysis suggested a phytanoyl-CoA family oxygenase as a metaldehyde-degrading gene candidate due to its close homology to a previously identified metaldehyde-degrading gene known as mahX. Heterologous gene expression in Escherichia coli alongside degradation tests verified its functional significance and the degrading gene homolog was henceforth called mahS. It was found that mahS is hosted within the conjugative plasmid pSM1 and its genetic context suggested a crossover between the metaldehyde and acetoin degradation pathways. Here, specific replicons and ISs responsible for maintaining and dispersing metaldehyde-degrading genes in α, ß and γ-Proteobacteria through HGT were identified and described. In addition, a homologous gene implicated in the first step of metaldehyde utilisation in an α-Proteobacteria was uncovered. Insights into specific steps of this possible degradation pathway are provided.


Assuntos
Proteobactérias , Sphingomonadaceae , Proteobactérias/genética , Transferência Genética Horizontal , Plasmídeos/genética , Elementos de DNA Transponíveis/genética , Sphingomonadaceae/genética , Escherichia coli/genética
3.
Sci Total Environ ; 852: 158358, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36049686

RESUMO

Conventional arable cropping with annual crops established by ploughing and harrowing degrades larger soil aggregates that contribute to storing soil organic carbon (SOC). The urgent need to increase SOC content of arable soils to improve their functioning and sequester atmospheric CO2 has motivated studies into the effects of reintroducing leys into long-term conventional arable fields. However, effects of short-term leys on total SOC accumulation have been equivocal. As soil aggregation may be important for carbon storage, we investigated the effects of arable-to-ley conversion on cambisol soil after three years of ley, on concentrations and stocks of SOC, nitrogen and their distributions in different sized water-stable aggregates. These values were benchmarked against soil from beneath hedgerow margins. SOC stocks (0-7 cm depth) rose from 20.3 to 22.6 Mg ha-1 in the arable-to-ley conversion, compared to 30 Mg ha-1 in hedgerows, but this 2.3 Mg ha-1 difference (or 0.77 Mg C ha-1 yr-1) was not significant). However, the proportion of large macroaggregates (> 2000 µm) increased 5.4-fold in the arable-to-ley conversion, recovering to similar abundance as hedgerow soils, driving near parallel increases in SOC and nitrogen within large macroaggregates (5.1 and 5.7-fold respectively). The total SOC (0-7 cm depth) stored in large macroaggregates increased from 2.0 to 9.6 Mg ha-1 in the arable-to-ley conversion, which no longer differed significantly from the 12.1 Mg ha-1 under hedgerows. The carbon therefore accumulated three times faster, at 2.53 Mg C ha-1 yr-1, in the large macroaggregates compared to the bulk soil. These findings highlight the value of monitoring large macroaggregate-bound SOC as a key early indicator of shifts in soil quality in response to change in field management, and the benefits of leys in soil aggregation, carbon accumulation, and soil functioning, providing justification for fiscal incentives that encourage wider use of leys in arable rotations.


Assuntos
Solo , Trifolium , Carbono , Nitrogênio , Sequestro de Carbono , Poaceae , Medicago , Dióxido de Carbono , Agricultura , Água
4.
Front Plant Sci ; 13: 955985, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092419

RESUMO

Wheat yields have plateaued in the UK over the last 25 years, during which time most arable land has been annually cropped continuously with short rotations dominated by cereals. Arable intensification has depleted soil organic matter and biology, including mycorrhizas, which are affected by tillage, herbicides, and crop genotype. Here, we test whether winter wheat yields, mycorrhization, and shoot health can be improved simply by adopting less intensive tillage and adding commercial mycorrhizal inoculum to long-term arable fields, or if 3-year grass-clover leys followed direct drilling is more effective for biological regeneration of soil with reduced N fertiliser. We report a trial of mycorrhization, ear pathology, and yield performance of the parents and four double haploid lines from the Avalon x Cadenza winter wheat population in a long-term arable field that is divided into replicated treatment plots. These plots comprised wheat lines grown using ploughing or disc cultivation for 3 years, half of which received annual additions of commercial arbuscular mycorrhizal (AM) inoculum, compared to 3-year mown grass-clover ley plots treated with glyphosate and direct-drilled. All plots annually received 35 kg of N ha-1 fertiliser without fungicides. The wheat lines did not differ in mycorrhization, which averaged only 34% and 40% of root length colonised (RLC) in the ploughed and disc-cultivated plots, respectively, and decreased with inoculation. In the ley, RLC increased to 52%. Two wheat lines were very susceptible to a sooty ear mould, which was lowest in the ley, and highest with disc cultivation. AM inoculation reduced ear infections by >50% in the susceptible lines. In the ley, yields ranged from 7.2 to 8.3 t ha-1, achieving 92 to 106% of UK average wheat yield in 2018 (7.8 t ha-1) but using only 25% of average N fertiliser. Yields with ploughing and disc cultivation averaged only 3.9 and 3.4 t ha-1, respectively, with AM inoculum reducing yields from 4.3 to 3.5 t ha-1 in ploughed plots, with no effect of disc cultivation. The findings reveal multiple benefits of reintegrating legume-rich leys into arable rotations as part of a strategy to regenerate soil quality and wheat crop health, reduce dependence on nitrogen fertilisers, enhance mycorrhization, and achieve good yields.

5.
Trends Ecol Evol ; 37(7): 573-581, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35504748

RESUMO

Traits are inherent properties of organisms, but how are they defined for organismal networks such as mycorrhizal symbioses? Mycorrhizal symbioses are complex and diverse belowground symbioses between plants and fungi that have proved challenging to fit into a unified and coherent trait framework. We propose an inclusive mycorrhizal trait framework that classifies traits as morphological, physiological, and phenological features that have functional implications for the symbiosis. We further classify mycorrhizal traits by location - plant, fungus, or the symbiosis - which highlights new questions in trait-based mycorrhizal ecology designed to charge and challenge the scientific community. This new framework is an opportunity for researchers to interrogate their data to identify novel insights and gaps in our understanding of mycorrhizal symbioses.


Assuntos
Micorrizas , Ecologia , Micorrizas/fisiologia , Fenótipo , Plantas/microbiologia , Simbiose
6.
Environ Microbiol ; 24(1): 298-308, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34913554

RESUMO

Denitrification causes loss of available nitrogen from soil systems, thereby reducing crop productivity and increasing reliance on agrochemicals. The dynamics of denitrification and denitrifying communities are thought to be altered by land management practices, which affect the physicochemical properties of the soil. In this study, we look at the effects of long-term tillage and fertilization regimes on arable soils following 16 years of treatment in a factorial field trial. By studying the bacterial community composition based on 16S rRNA amplicons, absolute bacterial abundance and diversity of denitrification functional genes (nirK, nirS and nosZ), under conditions of minimum/conventional tillage and organic/synthetic mineral fertilizer, we tested how specific land management histories affect the diversity and distribution of both bacteria and denitrification genes. Bacterial and denitrifier communities were largely unaffected by land management history and clustered predominantly by spatial location, indicating that the variability in bacterial community composition in these arable soils is governed by innate environmental differences and Euclidean distance rather than agricultural management intervention.


Assuntos
Microbiologia do Solo , Solo , Bactérias/genética , Desnitrificação , Fertilização , RNA Ribossômico 16S/genética , Areia , Solo/química , Reino Unido
7.
Sci Total Environ ; 789: 147880, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34058593

RESUMO

Managing soil to support biodiversity is important to sustain the ecosystem services provided by soils upon which society depends. There is increasing evidence that functional diversity of soil biota is important for ecosystem services, and has been degraded by intensive agriculture. Importantly, the spatial distribution of reservoirs of soil biota in and surrounding arable fields is poorly understood. In a field experiment, grass-clover ley strips were introduced into four arable fields which had been under continuous intensive/conventional arable rotation for more than 10 years. Earthworm communities in arable fields and newly established grass-clover leys, as well as field boundary land uses (hedgerows and grassy field margins), were monitored over 2 years after arable-to-ley conversions. Within 2 years, earthworm abundance in new leys was 732 ± 244 earthworms m-2, similar to that in field margin soils (619 ± 355 earthworms m-2 yr-1) and four times higher than in adjacent arable soil (185 ± 132 earthworms m-2). Relative to the arable soils, earthworm abundance under the new leys showed changes in community composition, structure and functional group, which were particularly associated with an increase in anecic earthworms; thus new leys became more similar to grassy field margins. Earthworm abundance was similar in new leys that were either connected to biodiversity reservoirs i.e. field margins and hedgerows, or not (installed earthworm barriers). This suggests that, for earthworm communities in typical arable fields, biodiversity reservoirs in adjacent field margins and hedgerows may not be critical for earthworm populations to increase. We conclude that the increase in earthworm abundance in the new leys observed over 2 years was driven by recruitment from the existing residual population in arable soils. Therefore, arable soils are also potential reservoirs of biodiversity.


Assuntos
Oligoquetos , Agricultura , Animais , Biodiversidade , Ecossistema , Solo
8.
Microbiome ; 9(1): 48, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597033

RESUMO

BACKGROUND: Salt marshes are major natural repositories of sequestered organic carbon with high burial rates of organic matter, produced by highly productive native flora. Accumulated carbon predominantly exists as lignocellulose which is metabolised by communities of functionally diverse microbes. However, the organisms that orchestrate this process and the enzymatic mechanisms employed that regulate the accumulation, composition and permanence of this carbon stock are not yet known. We applied meta-exo-proteome proteomics and 16S rRNA gene profiling to study lignocellulose decomposition in situ within the surface level sediments of a natural established UK salt marsh. RESULTS: Our studies revealed a community dominated by Gammaproteobacteria, Bacteroidetes and Deltaproteobacteria that drive lignocellulose degradation in the salt marsh. We identify 42 families of lignocellulolytic bacteria of which the most active secretors of carbohydrate-active enzymes were observed to be Prolixibacteracea, Flavobacteriaceae, Cellvibrionaceae, Saccharospirillaceae, Alteromonadaceae, Vibrionaceae and Cytophagaceae. These families secreted lignocellulose-active glycoside hydrolase (GH) family enzymes GH3, GH5, GH6, GH9, GH10, GH11, GH13 and GH43 that were associated with degrading Spartina biomass. While fungi were present, we did not detect a lignocellulolytic contribution from fungi which are major contributors to terrestrial lignocellulose deconstruction. Oxidative enzymes such as laccases, peroxidases and lytic polysaccharide monooxygenases that are important for lignocellulose degradation in the terrestrial environment were present but not abundant, while a notable abundance of putative esterases (such as carbohydrate esterase family 1) associated with decoupling lignin from polysaccharides in lignocellulose was observed. CONCLUSIONS: Here, we identify a diverse cohort of previously undefined bacteria that drive lignocellulose degradation in the surface sediments of the salt marsh environment and describe the enzymatic mechanisms they employ to facilitate this process. Our results increase the understanding of the microbial and molecular mechanisms that underpin carbon sequestration from lignocellulose within salt marsh surface sediments in situ and provide insights into the potential enzymatic mechanisms regulating the enrichment of polyphenolics in salt marsh sediments. Video Abstract.


Assuntos
Sedimentos Geológicos/microbiologia , Lignina/metabolismo , Microbiota/fisiologia , Áreas Alagadas , Microbiota/genética , RNA Ribossômico 16S/genética , Reino Unido
9.
Clin Cancer Res ; 27(1): 96-106, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33046513

RESUMO

PURPOSE: Intratumorally injected Clostridium novyi-NT (nontoxic; lacking the alpha toxin), an attenuated strain of C. novyi, replicates within hypoxic tumor regions resulting in tumor-confined cell lysis and inflammatory response in animals, which warrants clinical investigation. PATIENTS AND METHODS: This first-in-human study (NCT01924689) enrolled patients with injectable, treatment-refractory solid tumors to receive a single intratumoral injection of C. novyi-NT across 6 dose cohorts (1 × 104 to 3 × 106 spores, 3+3 dose-escalation design) to determine dose-limiting toxicities (DLT), and the maximum tolerated dose. RESULTS: Among 24 patients, a single intratumoral injection of C. novyi-NT led to bacterial spores germination and the resultant lysis of injected tumor masses in 10 patients (42%) across all doses. The cohort 5 dose (1 × 106 spores) was defined as the maximum tolerated dose; DLTs were grade 4 sepsis (n = 2) and grade 4 gas gangrene (n = 1), all occurring in three patients with injected tumors >8 cm. Other treatment-related grade ≥3 toxicities included pathologic fracture (n = 1), limb abscess (n = 1), soft-tissue infection (n = 1), respiratory insufficiency (n = 1), and rash (n = 1), which occurred across four patients. Of 22 evaluable patients, nine (41%) had a decrease in size of the injected tumor and 19 (86%) had stable disease as the best overall response in injected and noninjected lesions combined. C. novyi-NT injection elicited a transient systemic cytokine response and enhanced systemic tumor-specific T-cell responses. CONCLUSIONS: Single intratumoral injection of C. novyi-NT is feasible. Toxicities can be significant but manageable. Signals of antitumor activity and the host immune response support additional studies of C. novyi-NT in humans.


Assuntos
Clostridium/imunologia , Imunoterapia/métodos , Neoplasias/terapia , Esporos Bacterianos/imunologia , Adulto , Idoso , Resistencia a Medicamentos Antineoplásicos/imunologia , Estudos de Viabilidade , Feminino , Humanos , Imunoterapia/efeitos adversos , Injeções Intralesionais , Masculino , Pessoa de Meia-Idade , Neoplasias/imunologia
10.
Nat Commun ; 11(1): 2636, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457288

RESUMO

The mechanisms regulating community composition and local dominance of trees in species-rich forests are poorly resolved, but the importance of interactions with soil microbes is increasingly acknowledged. Here, we show that tree seedlings that interact via root-associated fungal hyphae with soils beneath neighbouring adult trees grow faster and have greater survival than seedlings that are isolated from external fungal mycelia, but these effects are observed for species possessing ectomycorrhizas (ECM) and not arbuscular mycorrhizal (AM) fungi. Moreover, survival of naturally-regenerating AM seedlings over ten years is negatively related to the density of surrounding conspecific plants, while survival of ECM tree seedlings displays positive density dependence over this interval, and AM seedling roots contain greater abundance of pathogenic fungi than roots of ECM seedlings. Our findings show that neighbourhood interactions mediated by beneficial and pathogenic soil fungi regulate plant demography and community structure in hyperdiverse forests.


Assuntos
Micorrizas/fisiologia , Microbiologia do Solo , Árvores/microbiologia , China , Florestas , Fungos/genética , Fungos/patogenicidade , Fungos/fisiologia , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Modelos Biológicos , Biologia Molecular , Micorrizas/genética , Micorrizas/patogenicidade , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Simbiose , Árvores/crescimento & desenvolvimento
11.
J Clin Oncol ; 38(5): 388-394, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31461380

RESUMO

PURPOSE: Talazoparib has demonstrated efficacy in patients with BRCA-positive metastatic breast cancer. This study evaluated the pathologic response of talazoparib alone for 6 months in patients with a known germline BRCA pathogenic variant (gBRCA-positive) and operable breast cancer. METHODS: Eligibility included 1 cm or larger invasive tumor and gBRCA-positive disease. Human epidermal growth factor receptor 2-positive tumors were excluded. Twenty patients underwent a pretreatment biopsy, 6 months of once per day oral talazoparib (1 mg), followed by definitive surgery. Patients received adjuvant therapy at physician's discretion. The primary end point was residual cancer burden (RCB). With 20 patients, the RCB-0 plus RCB-I response rate can be estimated with a 95% CI with half width less than 20%. RESULTS: Twenty patients were enrolled from August 2016 to September 2017. Median age was 38 years (range, 23 to 58 years); 16 patients were gBRCA1 positive and 4 patients were gBRCA2 positive. Fifteen patients had triple-negative breast cancer (estrogen receptor/progesterone receptor < 10%), and five had hormone receptor-positive disease. Five patients had clinical stage I disease, 12 had stage II, and three had stage III, including one patient with inflammatory breast carcinoma and one with metaplastic chondrosarcomatous carcinoma. One patient chose to receive chemotherapy before surgery and was not included in RCB analyses. RCB-0 (pathologic complete response) rate was 53% and RCB-0/I was 63%. Eight patients (40%) had grade 3 anemia and required a transfusion, three patients had grade 3 neutropenia, and 1 patient had grade 4 thrombocytopenia. Common grade 1 or 2 toxicities were nausea, fatigue, neutropenia, alopecia, dizziness, and dyspnea. Toxicities were managed by dose reduction and transfusions. Nine patients required dose reduction. CONCLUSION: Neoadjuvant single-agent oral talazoparib once per day for 6 months without chemotherapy produced substantial RCB-0 rate with manageable toxicity. The substantive pathologic response to single-agent talazoparib supports the larger, ongoing neoadjuvant trial (ClinicalTrials.gov identifier: NCT03499353).


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Ftalazinas/administração & dosagem , Administração Oral , Adulto , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/cirurgia , Quimioterapia Adjuvante , Feminino , Mutação em Linhagem Germinativa , Humanos , Adesão à Medicação , Pessoa de Meia-Idade , Terapia Neoadjuvante , Ftalazinas/efeitos adversos , Projetos Piloto , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Inibidores de Poli(ADP-Ribose) Polimerases/efeitos adversos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética
14.
Oncologist ; 23(11): 1300-1309, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30139837

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is a heterogeneous disease with subtypes having different "targetable" molecular aberrations. Metaplastic breast cancers (MpBCs) are typically TNBCs and commonly have alterations in the PI3K/Akt/mTOR pathway. We previously reported efficacy for an mTOR-based chemotherapy regimen in MpBC. To determine if tumor subtype influences prognosis, we compared treatment outcomes of patients with MpBC with those of patients with nonmetaplastic TNBC receiving an mTOR-based systemic therapy regimen. PATIENTS AND METHODS: Patients with advanced MpBC and nonmetaplastic TNBC were treated at our institution from April 16, 2009, through November 4, 2014, using mTOR inhibition (temsirolimus or everolimus) with liposomal doxorubicin and bevacizumab (DAT/DAE). Median progression-free survival (PFS) and overall survival (OS) were estimated by the Kaplan-Meier method. Cox regression analyses were used to evaluate associations between tumor histology and outcomes. Multivariable models were adjusted for all covariates. RESULTS: Fourteen patients with nonmetaplastic TNBC and 59 patients with advanced MpBC were treated with DAT/DAE. MpBC patients were older (p = .002) and less likely to have a history of bevacizumab use (p = .023). Median PFS for the nonmetaplastic TNBC and MpBC patients was 2.5 months and 4.8 months, respectively. This difference in PFS was statistically significant on univariable (p = .006) but not multivariable analysis (p = .087). Median OS for the nonmetaplastic TNBC and MpBC patients was 3.7 months and 10.0 months, respectively (p = .0003). MpBC remained significantly associated with improved OS on multivariable analysis (p < .0001). CONCLUSION: In our study, DAT/DAE appeared to be more effective in MpBC compared with nonmetaplastic TNBC. These data support patient selection for targeted therapy in TNBC. IMPLICATIONS FOR PRACTICE: Metaplastic breast cancers (MpBCs) represent <1% of all breast cancers, demonstrate mesenchymal differentiation, and are typically resistant to chemotherapy. Patients with advanced MpBC treated with an mTOR-based systemic therapy regimen had better long-term outcomes compared with patients with nonmetaplastic triple-negative breast cancer treated with the same regimen, suggesting that metaplastic histology may predict benefit from agents targeting the PI3K/Akt/mTOR pathway.


Assuntos
Serina-Treonina Quinases TOR/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Adulto , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Prognóstico , Neoplasias de Mama Triplo Negativas/patologia
15.
Ecol Lett ; 21(5): 713-723, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29536604

RESUMO

Partitioning of soil phosphorus (P) pools has been proposed as a key mechanism maintaining plant diversity, but experimental support is lacking. Here, we provided different chemical forms of P to 15 tree species with contrasting root symbiotic relationships to investigate plant P acquisition in both tropical and subtropical forests. Both ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) trees responded positively to addition of inorganic P, but strikingly, ECM trees acquired more P from a complex organic form (phytic acid). Most ECM tree species and all AM tree species also showed some capacity to take up simple organic P (monophosphate). Mycorrhizal colonisation was negatively correlated with soil extractable P concentration, suggesting that mycorrhizal fungi may regulate organic P acquisition among tree species. Our results support the hypothesis that ECM and AM plants partition soil P sources, which may play an ecologically important role in promoting species coexistence in tropical and subtropical forests.


Assuntos
Micorrizas , Solo , Árvores , Florestas , Fósforo , Raízes de Plantas , Solo/química
16.
New Phytol ; 220(4): 957-962, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29436724

RESUMO

We know a lot about the potential functions of mycorrhizas, but whether or not these are realized in the field where plants simultaneously experience a range of biotic interactions and fluctuating abiotic conditions is more or less unknown. In this Viewpoint, we present findings from a literature survey of papers on mycorrhizal function published in New Phytologist during the past 30 years. This survey showed that most functional studies are still conducted under controlled conditions, target mostly arbuscular and ectomycorrhizas, and focus on nutrient and carbon dynamics of the symbiosis. We also share discussions from a workshop, 'In situ mycorrhizal function: how do we get relevant data from a messy world?', held at the 9th International Conference on Mycorrhiza (ICOM9) in August 2017. In this workshop, we examined possibilities and limitations of old and new techniques for field research, and participants expressed the need to learn more about fungal traits and how they may relate to function. We argue that moving mycorrhizal experiments into the field will allow us not only to quantify realized functions, but also to revisit old paradigms and possibly discover new functions.


Assuntos
Micorrizas/fisiologia , Congressos como Assunto , Análise de Componente Principal , Pesquisa
17.
Microbiologyopen ; 7(1)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29115058

RESUMO

The impacts of increased flooding frequency on soil microbial communities and potential functions, in line with predicted environmental changes, were investigated in a laboratory-controlled environment. More frequent flooding events altered microbial community composition and significantly increased the resolved species alpha-diversity (Shannon index). The Bacteria:Archaea ratio was greater at the end of the experiment than at the start, more-so after only one flood. Significant changes in taxa and functional gene abundances were identified and quantified. These include genes related to the reduction and oxidation of substances associated with anoxia, for example, those involved in nitrogen and sulfur cycling. No significant changes were observed in the methanogenesis pathway, another function associated with anoxia and which contributes to the emission of greenhouse gases.


Assuntos
Archaea/classificação , Archaea/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Biota , Inundações , Microbiologia do Solo , Redes e Vias Metabólicas/genética , Metabolismo , Modelos Teóricos
18.
New Phytol ; 216(1): 227-238, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28722181

RESUMO

The availability of global microbial diversity data, collected using standardized metabarcoding techniques, makes microorganisms promising models for investigating the role of regional and local factors in driving biodiversity. Here we modelled the global diversity of symbiotic arbuscular mycorrhizal (AM) fungi using currently available data on AM fungal molecular diversity (small subunit (SSU) ribosomal RNA (rRNA) gene sequences) in field samples. To differentiate between regional and local effects, we estimated species pools (sets of potentially suitable taxa) for each site, which are expected to reflect regional processes. We then calculated community completeness, an index showing the fraction of the species pool present, which is expected to reflect local processes. We found significant spatial variation, globally in species pool size, as well as in local and dark diversity (absent members of the species pool). Species pool size was larger close to areas containing tropical grasslands during the last glacial maximum, which are possible centres of diversification. Community completeness was greater in regions of high wilderness (remoteness from human disturbance). Local diversity was correlated with wilderness and current connectivity to mountain grasslands. Applying the species pool concept to symbiotic fungi facilitated a better understanding of how biodiversity can be jointly shaped by large-scale historical processes and recent human disturbance.


Assuntos
Biodiversidade , Atividades Humanas , Micorrizas/fisiologia , Ecossistema , Geografia , Humanos
19.
Microb Biotechnol ; 10(6): 1824-1829, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28707368

RESUMO

Metaldehyde is a common molluscicide, used to control slugs in agriculture and horticulture. It is resistant to breakdown by current water treatment processes, and its accumulation in drinking water sources leads to regular regulatory failures in drinking water quality. To address this problem, we isolated metaldehyde-degrading microbes from domestic soils. Two distinct bacterial isolates were cultured, that were able to grow prototrophically using metaldehyde as sole carbon and energy source. One isolate belonged to the genus Acinetobacter (strain designation E1) and the other isolate belonged to the genus Variovorax (strain designation E3). Acinetobacter E1 was able to degrade metaldehyde to a residual concentration < 1 nM, whereas closely related Acinetobacter strains were completely unable to degrade metaldehyde. Variovorax E3 grew and degraded metaldehyde more slowly than Acinetobacter E1, and residual metaldehyde remained at the end of growth of the Variovorax E3 strain. Biological degradation of metaldehyde using these bacterial strains or approaches that allow in situ amplification of metaldehyde-degrading bacteria may represent a way forward for dealing with metaldehyde contamination in soils and water.


Assuntos
Acetaldeído/análogos & derivados , Bactérias/isolamento & purificação , Bactérias/metabolismo , Moluscocidas/metabolismo , Microbiologia do Solo , Poluentes Químicos da Água/metabolismo , Acetaldeído/metabolismo , Bactérias/classificação , Bactérias/genética , Biodegradação Ambiental
20.
Sci Total Environ ; 579: 60-71, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27866746

RESUMO

The effects of increased tropospheric ozone (O3) pollution levels on methane (CH4) emissions from peatlands, and their underlying mechanisms, remain unclear. In this study, we exposed peatland mesocosms from a temperate wet heath dominated by the sedge Schoenus nigricans and Sphagnum papillosum to four O3 treatments in open-top chambers for 2.5years, to investigate the O3 impacts on CH4 emissions and the processes that underpin these responses. Summer CH4 emissions, were significantly reduced, by 27% over the experiment, due to summer daytime (8hday-1) O3 exposure to non-filtered air (NFA) plus 35ppb O3, but were not significantly affected by year-round, 24hday-1, exposure to NFA plus 10ppb or NFA plus 25ppb O3. There was no evidence that the reduced CH4 emissions in response to elevated summer O3 exposure were caused by reduced plant-derived carbon availability below-ground, because we found no significant effect of high summer O3 exposure on root biomass, pore water dissolved organic carbon concentrations or the contribution of recent photosynthate to CH4 emissions. Our CH4 production potential and CH4 oxidation potential measurements in the different O3 treatments could also not explain the observed CH4 emission responses to O3. However, pore water ammonium concentrations at 20cm depth were consistently reduced during the experiment by elevated summer O3 exposure, and strong positive correlations were observed between CH4 emission and pore water ammonium concentration at three peat depths over the 2.5-year study. Our results therefore imply that elevated regional O3 exposures in summer, but not the small increases in northern hemisphere annual mean background O3 concentrations predicted over this century, may lead to reduced CH4 emissions from temperate peatlands as a consequence of reductions in soil inorganic nitrogen affecting methanogenic and/or methanotrophic activity.


Assuntos
Poluentes Atmosféricos/análise , Ecossistema , Monitoramento Ambiental , Metano/análise , Ozônio/análise , Cyperaceae , Sphagnopsida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...