Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 109(7): 1063-1073, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35851467

RESUMO

PREMISE: Leaf lobing and leaf size vary considerably across and within species, including among grapevines (Vitis spp.), some of the best-studied leaves. We examined the relationship between leaf lobing and leaf area across grapevine populations that varied in extent of leaf lobing. METHODS: We used homologous landmarking techniques to measure 2632 leaves across 2 years in 476 unique, genetically distinct grapevines from five biparental crosses that vary primarily in the extent of lobing. We determined to what extent leaf area explained variation in lobing, vein length, and vein to blade ratio. RESULTS: Although lobing was the primary source of variation in shape across the leaves we measured, leaf area varied only slightly as a function of lobing. Rather, leaf area increases as a function of total major vein length, total branching vein length, and vein to blade ratio. These relationships are stronger for more highly lobed leaves, with the residuals for each model differing as a function of distal lobing. CONCLUSIONS: For leaves with different extents of lobing but the same area, the more highly lobed leaves have longer veins and higher vein to blade ratios, allowing them to maintain similar leaf areas despite increased lobing. These findings show how more highly lobed leaves may compensate for what would otherwise result in a reduced leaf area, allowing for increased photosynthetic capacity through similar leaf size.


Assuntos
Folhas de Planta , Vitis
2.
Plants (Basel) ; 11(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35270166

RESUMO

Increased map density and transferability of markers are essential for the genetic analysis of fruit quality and stress tolerance in interspecific grapevine populations. We used 1449 GBS and 2000 rhAmpSeq markers to develop a dense map for an interspecific F2 population (VRS-F2) that was derived by selfing a single F1 from a Vitis riparia x 'Seyval blanc' cross. The resultant map contained 2519 markers spanning 1131.3 cM and was highly collinear with the Vitis vinifera 'PN40024' genome. Quantitative trait loci (QTL) for berry skin color and flower type were used to validate the map. Four rhAmpSeq transferable markers were identified that can be used in pairs (one pistillate and one hermaphroditic) to predict pistillate and hermaphrodite flower type with ≥99.7% accuracy. Total and individual anthocyanin diglucoside QTL mapped to chromosome 9 near a 5-O-GLUCOSYLTRANSFERASE candidate gene. Malic acid QTL were observed on chromosome 1 and 6 with two MALATE DEHYRDROGENASE CYTOPLASMIC 1 and ALUMINUM-ACTIVATED MALATE TRANSPORTER 2-LIKE (ALMT) candidate genes, respectively. Modeling malic acid identified a potential QTL on chromosome 8 with peak position in proximity of another ALMT. A first-ever reported QTL for the grassy smelling volatile (E)-2-hexenal was found on chromosome 2 with a PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE PEROXIDASE candidate gene near peak markers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...