Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging Cell ; 22(8): e13897, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37272263

RESUMO

Developing accurate methods to quantify age-related muscle loss (sarcopenia) could greatly accelerate development of therapies to treat muscle loss in the elderly, as current methods are inaccurate or expensive. The current gold standard method for quantifying sarcopenia is dual-energy X-ray absorptiometry (DXA) but does not measure muscle directly-it is a composite measure quantifying "lean mass" (muscle) excluding fat and bone. In humans, DXA overestimates muscle mass, which has led to erroneous conclusions about the importance of skeletal muscle in human health and disease. In animal models, DXA is a popular method for measuring lean mass. However, instrumentation is expensive and is potentially limited by anesthesia concerns. Recently, the D3 -creatine (D3 Cr) dilution method for quantifying muscle mass was developed in humans and rats. This method is faster, cheaper, and more accurate than DXA. Here, we demonstrate that the D3 Cr method is a specific assay for muscle mass in mice, and we test associations with DXA and body weight. We evaluated the D3 Cr method compared to DXA-determined lean body mass (LBM) in aged mice and reported that DXA consistently overestimates muscle mass with age. Overall, we provide evidence that the D3 Cr dilution method directly measures muscle mass in mice. Combined with its ease of use, accessibility, and non-invasive nature, the method may prove to more quickly advance development of preclinical therapies targeting sarcopenia.


Assuntos
Composição Corporal , Pesos e Medidas Corporais , Creatinina , Músculo Esquelético , Absorciometria de Fóton , Animais , Camundongos , Masculino , Feminino , Camundongos Endogâmicos C57BL , Creatinina/urina , Pesos e Medidas Corporais/métodos
2.
J Lipid Res ; 49(9): 2038-44, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18515909

RESUMO

The liver secretes triglyceride-rich VLDLs, and the triglycerides in these particles are taken up by peripheral tissues, mainly heart, skeletal muscle, and adipose tissue. Blocking hepatic VLDL secretion interferes with the delivery of liver-derived triglycerides to peripheral tissues and results in an accumulation of triglycerides in the liver. However, it is unclear how interfering with hepatic triglyceride secretion affects adiposity, muscle triglyceride stores, and insulin sensitivity. To explore these issues, we examined mice that cannot secrete VLDL [due to the absence of microsomal triglyceride transfer protein (Mttp) in the liver]. These mice exhibit markedly reduced levels of apolipoprotein B-100 in the plasma, along with reduced levels of triglycerides in the plasma. Despite the low plasma triglyceride levels, triglyceride levels in skeletal muscle were unaffected. Adiposity and adipose tissue triglyceride synthesis rates were also normal, and body weight curves were unaffected. Even though the blockade of VLDL secretion caused hepatic steatosis accompanied by increased ceramides and diacylglycerols in the liver, the mice exhibited normal glucose tolerance and were sensitive to insulin at the whole-body level, as judged by hyperinsulinemic euglycemic clamp studies. Normal hepatic glucose production and insulin signaling were also maintained in the fatty liver induced by Mttp deletion. Thus, blocking VLDL secretion causes hepatic steatosis without insulin resistance, and there is little effect on muscle triglyceride stores or adiposity.


Assuntos
Fígado Gorduroso/etiologia , Resistência à Insulina , Metabolismo dos Lipídeos , Lipoproteínas VLDL/metabolismo , Tecido Adiposo/metabolismo , Animais , Proteínas de Transporte/genética , Lipídeos/sangue , Camundongos , Músculo Esquelético/química , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...