Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 59(50): 4703-4710, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33287544

RESUMO

YtvA from Bacillus subtilis is a sensor protein that responds to blue light stress and regulates the activity of transcription factor σB. It is composed of the N-terminal LOV (light-oxygen-voltage) domain, the C-terminal STAS (sulfate transporter and anti-sigma factor antagonist) domain, and a linker region connecting them. In this study, the photoreaction and kinetics of full-length YtvA and the intermolecular interaction with a downstream protein, RsbRA, were revealed by the transient grating method. Although N-YLOV-linker, which is composed of the LOV domain of YtvA with helices A'α and Jα, exhibits a diffusion change due to the rotational motion of the helices, the YtvA dimer does not show the diffusion change. This result suggests that the STAS domain inhibits the rotational movement of helices A'α and Jα. We found that the YtvA dimer formed a heterotetramer with the RsbRA dimer probably via the interaction between the STAS domains, and we showed the diffusion change upon blue light illumination with a time constant faster than 70 µs. This result suggests a conformational change of the STAS domains; i.e., the interface between the STAS domains of the proteins changes to enhance the friction with water by the rotation structural change of helices A'α and Jα of YtvA.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/efeitos da radiação , Fosfoproteínas/química , Fosfoproteínas/efeitos da radiação , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/efeitos da radiação , Bacillus subtilis/química , Bacillus subtilis/metabolismo , Bacillus subtilis/efeitos da radiação , Proteínas de Bactérias/metabolismo , Difusão Dinâmica da Luz , Luz , Modelos Moleculares , Fosfoproteínas/metabolismo , Processos Fotoquímicos , Fotorreceptores Microbianos/metabolismo , Domínios e Motivos de Interação entre Proteínas/efeitos da radiação , Estrutura Quaternária de Proteína/efeitos da radiação
2.
Nat Commun ; 11(1): 4248, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843623

RESUMO

Femtosecond time-resolved crystallography (TRC) on proteins enables resolving the spatial structure of short-lived photocycle intermediates. An open question is whether confinement and lower hydration of the proteins in the crystalline state affect the light-induced structural transformations. Here, we measured the full photocycle dynamics of a signal transduction protein often used as model system in TRC, Photoactive Yellow Protein (PYP), in the crystalline state and compared those to the dynamics in solution, utilizing electronic and vibrational transient absorption measurements from 100 fs over 12 decades in time. We find that the photocycle kinetics and structural dynamics of PYP in the crystalline form deviate from those in solution from the very first steps following photon absorption. This illustrates that ultrafast TRC results cannot be uncritically extrapolated to in vivo function, and that comparative spectroscopic experiments on proteins in crystalline and solution states can help identify structural intermediates under native conditions.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X/métodos , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Proteínas de Bactérias/efeitos da radiação , Cinética , Luz , Estrutura Molecular , Processos Fotoquímicos , Fotorreceptores Microbianos/efeitos da radiação , Conformação Proteica , Análise Espectral
4.
Biotechnol Biofuels ; 13: 117, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32636923

RESUMO

BACKGROUND: Mannitol is a C(6) polyol that is used in the food and medical sector as a sweetener and antioxidant, respectively. The sustainable production of mannitol, especially via the direct conversion of CO2 by photosynthetic cyanobacteria, has become increasingly appealing. However, previous work aiming to achieve mannitol production in the marine Synechococcus sp. PCC7002 via heterologous expression of mannitol-1-phosphate-5-dehydrogenase (mtlD) and mannitol-1-phosphatase (m1p, in short: a 'mannitol cassette'), proved to be genetically unstable. In this study, we aim to overcome this genetic instability by conceiving a strategy to stabilize mannitol production using Synechocystis sp. PCC6803 as a model cyanobacterium. RESULTS: Here, we explore the stabilizing effect that mannitol production may have on cells faced with osmotic stress, in the freshwater cyanobacterium Synechocystis sp. PCC6803. We first validated that mannitol can function as a compatible solute in Synechocystis sp. PCC6803, and in derivative strains in which the ability to produce one or both of the native compatible solutes was impaired. Wild-type Synechocystis, complemented with a mannitol cassette, indeed showed increased salt tolerance, which was even more evident in Synechocystis strains in which the ability to synthesize the endogenous compatible solutes was impaired. Next we tested the genetic stability of all these strains with respect to their mannitol productivity, with and without salt stress, during prolonged turbidostat cultivations. The obtained results show that mannitol production under salt stress conditions in the Synechocystis strain that cannot synthesize its endogenous compatible solutes is remarkably stable, while the control strain completely loses this ability in only 6 days. DNA sequencing results of the control groups that lost the ability to synthesize mannitol revealed that multiple types of mutation occurred in the mtlD gene that can explain the disruption of mannitol production. CONCLUSIONS: Mannitol production in freshwater Synechocsytis sp. PCC6803 confers it with increased salt tolerance. Under this strategy, genetically instability which was the major challenge for mannitol production in cyanobacteria is tackled. This paper marks the first report of utilization of the response to salt stress as a factor that can increase the stability of mannitol production in a cyanobacterial cell factory.

5.
Physiol Plant ; 170(1): 10-26, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32141606

RESUMO

Although cyanobacteria absorb blue light, they use it less efficiently for photosynthesis than other colors absorbed by their photosynthetic pigments. A plausible explanation for this enigmatic phenomenon is that blue light is not absorbed by phycobilisomes and, hence, causes an excitation shortage at photosystem II (PSII). This hypothesis is supported by recent physiological studies, but a comprehensive understanding of the underlying changes in gene expression is still lacking. In this study, we investigate how a switch from artificial white light to blue, orange or red light affects the transcriptome of the cyanobacterium Synechocystis sp. PCC 6803. In total, 145 genes were significantly regulated in response to blue light, whereas only a few genes responded to orange and red light. In particular, genes encoding the D1 and D2 proteins of PSII, the PSII chlorophyll-binding protein CP47 and genes involved in PSII repair were upregulated in blue light, whereas none of the photosystem I (PSI) genes responded to blue light. These changes were accompanied by a decreasing PSI:PSII ratio. Furthermore, many genes involved in gene transcription and translation and several ATP synthase genes were transiently downregulated, concurrent with a temporarily decreased growth rate in blue light. After 6-7 days, when cell densities had strongly declined, the growth rate recovered and the expression of these growth-related genes returned to initial levels. Hence, blue light induces major changes in the transcriptome of cyanobacteria, in an attempt to increase the photosynthetic activity of PSII and cope with the adverse growth conditions imposed by blue light.


Assuntos
Synechocystis , Proteínas de Bactérias , Luz , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema II , Ficobilissomas , Transcriptoma/genética
6.
Biochim Biophys Acta Biomembr ; 1862(2): 183113, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31672539

RESUMO

Multi-spanning membrane proteins usually require solubilization to allow proper purification and characterization, which generally impairs their structural and functional integrity. We have tested the efficacy of several commonly used detergents and membrane-mimicking nanodiscs with respect to solubilization, spectral properties, thermal stability and oligomeric profile of two membrane proteins from the eubacterial rhodopsin family, green proteorhodopsin (PR) and Gloeobacter violaceus rhodopsin (GR). Good solubilization was observed for the detergents TritonX-100 and dodecylphosphocholine (DPC), but DPC in particular strongly affected the thermal stability of PR and especially GR. The least deleterious effects were obtained with n-dodecyl-ß-D-maltopyranoside (DDM) and octyl glucose neopentyl glycol (OGNG), which adequately stabilized the native oligomeric and monomeric state of PR and GR, respectively. The transition from the oligomeric to the monomeric state is accompanied by a small red-shift. Both GR and PR were rather unstable in SMA-nanodiscs, but the highest thermal stability was realized by the MSP-nanodisc environment. The size of the MSP-nanodisc was too small to fit the PR hexamer, but large enough to contain the PR monomer and GR trimer. This permitted the comparison of the photocycle of trimeric GR in a membrane-mimicking (MSP-nanodisc) and a detergent (DDM) environment. The ultrarapid early phase of the photocycle (femto- to picosecond lifetimes) showed very similar kinetics in either environment, but the slower part, initiated with proton transfer and generation of the M intermediate, proceeded faster in the nanodisc environment. The implications of our results for the biophysical characterization of PR and GR are discussed.


Assuntos
Proteínas de Bactérias/química , Bicamadas Lipídicas/química , Nanopartículas/química , Rodopsina/química , Cianobactérias/química , Detergentes/química , Maltose/análogos & derivados , Maltose/química , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Estabilidade Proteica , Tioglucosídeos/química
7.
Methods Mol Biol ; 2077: 165-180, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31707658

RESUMO

Phosphorylation plays a critical role in facilitating signal transduction in prokaryotic and eukaryotic organisms. Our study introduces a tool for investigation of signal diffusion in a biochemical regulation network through the design and characterization of a light-stimulated histidine kinase that consists of the LOV domain from YtvA from Bacillus subtilis and the histidine kinase domain Sln1 from Saccharomyces cerevisiae. We show that blue light can be used as a trigger for modulation of the phosphorylation events in this engineered two-component signal transduction pathway in a eukaryotic cell. At the same time, we demonstrate the robustness of LOV domains and their utility for designing fusion proteins for signal transduction that can be triggered with (blue) light, providing a ready toolkit to design blue light dependent two-component signalling pathways.


Assuntos
Histidina Quinase/metabolismo , Luz , Sequência de Aminoácidos , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ativação Enzimática/efeitos da radiação , Ensaios Enzimáticos/métodos , Proteínas Fúngicas , Histidina Quinase/química , Histidina Quinase/genética , Processos Fotoquímicos , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos da radiação
8.
ACS Synth Biol ; 8(10): 2263-2269, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31553573

RESUMO

Cyanobacterial cell factories are widely researched for the sustainable production of compounds directly from CO2. Their application, however, has been limited for two reasons. First, traditional approaches have been shown to lead to unstable cell factories that lose their production capability when scaled to industrial levels. Second, the alternative approaches developed so far are mostly limited to growing conditions, which are not always the case in industry, where nongrowth periods tend to occur (e.g., darkness). We tackled both by generalizing the concept of growth-coupled production to fitness coupling. The feasibility of this new approach is demonstrated for the production of fumarate by constructing the first stable dual-strategy cell factory. We exploited circadian metabolism using both systems and synthetic biology tools, resulting in the obligatorily coupling of fumarate to either biomass or energy production. Resorting to laboratory evolution experiments, we show that this engineering approach is more stable than conventional methods.


Assuntos
Relógios Circadianos/fisiologia , Fumaratos/metabolismo , Synechocystis/metabolismo , Synechocystis/fisiologia , Biomassa , Escuridão , Engenharia Metabólica , Fotossíntese/fisiologia , Biologia Sintética/métodos
9.
Artigo em Inglês | MEDLINE | ID: mdl-30984754

RESUMO

The approach of providing an oxygenic photosynthetic organism with a cyclic electron transfer system, i.e., a far-red light-driven proton pump, is widely proposed to maximize photosynthetic efficiency via expanding the absorption spectrum of photosynthetically active radiation. As a first step in this approach, Gloeobacter rhodopsin was expressed in a PSI-deletion strain of Synechocystis sp. PCC6803. Functional expression of Gloeobacter rhodopsin, in contrast to Proteorhodopsin, did not stimulate the rate of photoheterotrophic growth of this Synechocystis strain, analyzed with growth rate measurements and competition experiments. Nevertheless, analysis of oxygen uptake and-production rates of the Gloeobacter rhodopsin-expressing strains, relative to the ΔPSI control strain, confirm that the proton-pumping Gloeobacter rhodopsin provides the cells with additional capacity to generate proton motive force. Significantly, expression of the Gloeobacter rhodopsin did modulate levels of pigment formation in the transgenic strain.

10.
Physiol Plant ; 166(1): 413-427, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30829400

RESUMO

A sustainable society will have to largely refrain from the use of fossil carbon deposits. In such a regime, renewable electricity can be harvested as a primary source of energy. However, as for the synthesis of carbon-based materials from bulk chemicals, an alternative is required. A sustainable approach towards this is the synthesis of commodity chemicals from CO2 , water and sunlight. Multiple paths to achieve this have been designed and tested in the domains of chemistry and biology. In the latter, the use of both chemotrophic and phototrophic organisms has been advocated. 'Direct conversion' of CO2 and H2 O, catalyzed by an oxyphototroph, has excellent prospects to become the most economically competitive of these transformations, because of the relative ease of scale-up of this process. Significantly, for a wide range of energy and commodity products, a proof of principle via engineering of the corresponding production organism has been provided. In the optimization of a cyanobacterial production organism, a wide range of aspects has to be addressed. Of these, here we will put our focus on: (1) optimizing the (carbon) flux to the desired product; (2) increasing the genetic stability of the producing organism and (3) maximizing its energy conversion efficiency. Significant advances have been made on all these three aspects during the past 2 years and these will be discussed: (1) increasing the carbon partitioning to >50%; (2) aligning product formation with the growth of the cells and (3) expanding the photosynthetically active radiation region for oxygenic photosynthesis.


Assuntos
Cianobactérias/metabolismo , Oxigênio/metabolismo , Fotossíntese/fisiologia , Dióxido de Carbono/metabolismo , Água/metabolismo
11.
Photochem Photobiol ; 95(4): 959-968, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30860604

RESUMO

Archaerhodopsin-3 (AR3) is a member of the microbial rhodopsin family of hepta-helical transmembrane proteins, containing a covalently bound molecule of all-trans retinal as a chromophore. It displays an absorbance band in the visible region of the solar spectrum (λmax 556 nm) and functions as a light-driven proton pump in the archaeon Halorubrum sodomense. AR3 and its mutants are widely used in neuroscience as optogenetic neural silencers and in particular as fluorescent indicators of transmembrane potential. In this study, we investigated the effect of analogs of the native ligand all-trans retinal A1 on the spectral properties and proton-pumping activity of AR3 and its single mutant AR3 (F229S). While, surprisingly, the 3-methoxyretinal A2 analog did not redshift the absorbance maximum of AR3, the analogs retinal A2 and 3-methylamino-16-nor-1,2,3,4-didehydroretinal (MMAR) did generate active redshifted AR3 pigments. The MMAR analog pigments could even be activated by near-infrared light. Furthermore, the MMAR pigments showed strongly enhanced fluorescence with an emission band in the near-infrared peaking around 815 nm. We anticipate that the AR3 pigments generated in this study have widespread potential for near-infrared exploitation as fluorescent voltage-gated sensors in optogenetics and artificial leafs and as proton pumps in bioenergy-based applications.


Assuntos
Proteínas Arqueais/química , Pigmentos Biológicos/síntese química , Halorubrum/fisiologia , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica
12.
Photosynth Res ; 141(3): 291-301, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30820745

RESUMO

The ubiquitous chlorophyll a (Chl a) pigment absorbs both blue and red light. Yet, in contrast to green algae and higher plants, most cyanobacteria have much lower photosynthetic rates in blue than in red light. A plausible but not yet well-supported hypothesis is that blue light results in limited energy transfer to photosystem II (PSII), because cyanobacteria invest most Chl a in photosystem I (PSI), whereas their phycobilisomes (PBS) are mostly associated with PSII but do not absorb blue photons. In this paper, we compare the photosynthetic performance in blue and orange-red light of wildtype Synechocystis sp. PCC 6803 and a PBS-deficient mutant. Our results show that the wildtype had much lower biomass, Chl a content, PSI:PSII ratio and O2 production rate per PSII in blue light than in orange-red light, whereas the PBS-deficient mutant had a low biomass, Chl a content, PSI:PSII ratio, and O2 production rate per PSII in both light colors. More specifically, the wildtype displayed a similar low photosynthetic efficiency in blue light as the PBS-deficient mutant in both light colors. Our results demonstrate that the absorption of light energy by PBS and subsequent transfer to PSII are crucial for efficient photosynthesis in cyanobacteria, which may explain both the low photosynthetic efficiency of PBS-containing cyanobacteria and the evolutionary success of chlorophyll-based light-harvesting antennae in environments dominated by blue light.


Assuntos
Luz , Mutação/genética , Fotossíntese/efeitos da radiação , Ficobilissomas/metabolismo , Synechocystis/fisiologia , Synechocystis/efeitos da radiação , Biomassa , Clorofila A/metabolismo , Oxigênio/metabolismo , Consumo de Oxigênio , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Ficobilissomas/efeitos da radiação
13.
Metab Eng ; 52: 68-76, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30447329

RESUMO

To fill the "green absorption gap", a green absorbing proteorhodopsin was expressed in a PSI-deletion strain (ΔPSI) of Synechocystis sp. PCC6803. Growth-rate measurements, competition experiments and physiological characterization of the proteorhodopsin-expressing strains, relative to the ΔPSI control strain, allow us to conclude that proteorhodopsin can enhance the rate of photoheterotrophic growth of ΔPSI Synechocystis strain. The physiological characterization included measurement of the amount of residual glucose in the spent medium and analysis of oxygen uptake- and production rates. To explore the use of solar radiation beyond the PAR region, a red-shifted variant Proteorhodopsin-D212N/F234S was expressed in a retinal-deficient PSI-deletion strain (ΔPSI/ΔSynACO). Via exogenous addition of retinal analogue an infrared absorbing pigment (maximally at 740 nm) was reconstituted in vivo. However, upon illumination with 746 nm light, it did not significantly stimulate the growth (rate) of this mutant. The inability of the proteorhodopsin-expressing ΔPSI strain to grow photoautotrophically is most likely due to a kinetic rather than a thermodynamic limitation of its NADPH-dehydrogenase in NADP+-reduction.


Assuntos
Clorofila/metabolismo , Fotossíntese/genética , Retinaldeído/metabolismo , Rodopsinas Microbianas/biossíntese , Synechocystis/metabolismo , Conjugação Genética/genética , Meios de Cultura , Escherichia coli/metabolismo , Glucose/metabolismo , Luz , NADPH Desidrogenase/metabolismo , Oxigênio/metabolismo , Rodopsinas Microbianas/genética , Synechocystis/genética
14.
Plant Physiol Biochem ; 132: 524-534, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30316162

RESUMO

Photoautotrophic growth of Synechocystis sp. PCC 6803 in a flat-panel photobioreactor, run in turbidostat mode under increasing intensities of orange-red light (636 nm), showed a maximal growth rate (0.12 h-1) at 300 µmolphotons m-2 s-1, whereas first signs of photoinhibition were detected above 800 µmolphotons m-2 s-1. To investigate the dynamic modulation of the thylakoid proteome in response to photoinhibitory light intensities, quantitative proteomics analyses by SWATH mass spectrometry were performed by comparing thylakoid membranes extracted from Synechocystis grown under low-intensity illumination (i.e. 50 µmolphotons m-2 s-1) with samples isolated from cells subjected to photoinhibitory light regimes (800, 950 and 1460 µmolphotons m-2 s-1). We identified and quantified 126 proteins with altered abundance in all three photoinhibitory illumination regimes. These data reveal the strategies by which Synechocystis responds to photoinibitory growth irradiances of orange-red light. The accumulation of core proteins of Photosystem II and reduction of oxygen-evolving-complex subunits in photoinhibited cells revealed a different turnover and repair rates of the integral and extrinsic Photosystem II subunits with variation of light intensity. Furthermore, Synechocystis displayed a differentiated response to photoinhibitory regimes also regarding Photosystem I: the amount of PsaD, PsaE, PsaJ and PsaM subunits decreased, while there was an increased abundance of the PsaA, PsaB, Psak2 and PsaL proteins. Photoinhibition with 636 nm light also elicited an increased capacity for cyclic electron transport, a lowering of the amount of phycobilisomes and an increase of the orange carotenoid protein content, all presumably as a photoprotective mechanism against the generation of reactive oxygen species.


Assuntos
Luz , Proteoma/metabolismo , Synechocystis/metabolismo , Synechocystis/efeitos da radiação , Tilacoides/metabolismo , Tilacoides/efeitos da radiação , Análise por Conglomerados , Complexo de Proteína do Fotossistema I/metabolismo , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/metabolismo , Synechocystis/crescimento & desenvolvimento
15.
Adv Exp Med Biol ; 1080: 3-26, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30091089

RESUMO

Cyanobacterial direct conversion of CO2 to several commodity chemicals has been recognized as a potential contributor to support the much-needed sustainable development of human societies. However, the feasibility of this "green conversion" hinders on our ability to overcome the hurdles presented by the natural evolvability of microbes. The latter may result in the genetic instability of engineered cyanobacterial strains leading to impaired productivity. This challenge is general to any "cell factory" approach in which the cells grow for multiple generations, and based on several studies carried out in different microbial hosts, we could identify that three distinct strategies have been proposed to tackle it. These are (1) to reduce microbial evolvability by decreasing the native mutation rate, (2) to align product formation with cell growth/fitness, and, paradoxically, (3) to efficiently reallocate cellular resources to product formation by uncoupling it from growth. The implementation of either of these strategies requires an advanced synthetic biology toolkit. Here, we review the existing methods available for cyanobacteria and identify areas of focus in which specific developments are still needed. Furthermore, we discuss how potentially stabilizing strategies may be used in combination leading to further increases of productivity while ensuring the stability of the cyanobacterial-based direct conversion process.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Biologia Sintética/métodos , Dióxido de Carbono/metabolismo , Cianobactérias/genética , Humanos
16.
Photosynth Res ; 138(2): 177-189, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30027501

RESUMO

Several studies have described that cyanobacteria use blue light less efficiently for photosynthesis than most eukaryotic phototrophs, but comprehensive studies of this phenomenon are lacking. Here, we study the effect of blue (450 nm), orange (625 nm), and red (660 nm) light on growth of the model cyanobacterium Synechocystis sp. PCC 6803, the green alga Chlorella sorokiniana and other cyanobacteria containing phycocyanin or phycoerythrin. Our results demonstrate that specific growth rates of the cyanobacteria were similar in orange and red light, but much lower in blue light. Conversely, specific growth rates of the green alga C. sorokiniana were similar in blue and red light, but lower in orange light. Oxygen production rates of Synechocystis sp. PCC 6803 were five-fold lower in blue than in orange and red light at low light intensities but approached the same saturation level in all three colors at high light intensities. Measurements of 77 K fluorescence emission demonstrated a lower ratio of photosystem I to photosystem II (PSI:PSII ratio) and relatively more phycobilisomes associated with PSII (state 1) in blue light than in orange and red light. These results support the hypothesis that blue light, which is not absorbed by phycobilisomes, creates an imbalance between the two photosystems of cyanobacteria with an energy excess at PSI and a deficiency at the PSII-side of the photosynthetic electron transfer chain. Our results help to explain why phycobilisome-containing cyanobacteria use blue light less efficiently than species with chlorophyll-based light-harvesting antennae such as Prochlorococcus, green algae and terrestrial plants.


Assuntos
Chlorella/efeitos da radiação , Luz , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema I/efeitos da radiação , Complexo de Proteína do Fotossistema II/efeitos da radiação , Synechocystis/efeitos da radiação , Chlorella/fisiologia , Oxigênio/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Ficocianina/metabolismo , Ficoeritrina/metabolismo , Pigmentos Biológicos/metabolismo , Synechocystis/fisiologia
17.
AMB Express ; 8(1): 53, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29611000

RESUMO

Helical alignment of the α-helical linker of the LOV (light-oxygen-voltage) domain of YtvA from Bacillus subtilis with the α-helical linker of the histidine-protein kinase domain of the Sln1 kinase of the phospho-relay system for osmoregulation of Saccharomyces cerevisiae has been used to construct a light-modulatable histidine protein kinase. In vitro, illumination with blue light inhibits both the ATP-dependent phosphorylation of this hybrid kinase, as well as the phosphoryl transfer to Ypd1, the phosphoryl transfer domain of the Sln1 system. The helical alignment was carried out with conservation of the complete Jα helix of YtvA, as well as of the phosphorylatable histidine residue of the Sln1 kinase, with conservation of the hepta-helical motive of coiled-coil structures, recognizable in the helices of the two separate, constituent, proteins. Introduction of the gene encoding this hybrid histidine protein kinase into cells of S. cerevisiae in which the endogenous Sln1 kinase had been deleted, allowed us to modulate gene expression in the yeast cells with (blue) light. This was first demonstrated via the light-induced alteration of the expression level of the mannosyl-transferase OCH1, via a translational-fusion approach. As expected, illumination decreased the expression level of OCH1; the steady state decrease in saturating levels of blue light was about 40%. To visualize the in vivo functionality of this light-dependent regulation system, we fused the green fluorescent protein (GFP) to another regulatory protein, HOG1, which is also responsive to the Sln1 kinase. HOG1 is phosphorylated by the MAP-kinase-kinase Pbs2, which in turn is under control of the Sln1 kinase, via the phosphoryl transfer domain Ypd1. Fluorescence microscopy was used to show that illumination of cells that contained the combination of the hybrid kinase and the HOG1::GFP fusion protein, led to a persistent increase in the level of nuclear accumulation of HOG1, in contrast to salt stress, which-as expected-showed the well-characterized transient response. The system described in this study will be valuable in future studies on the role of cytoplasmic diffusion in signal transduction in eukaryotic cells.

18.
Biotechnol J ; 13(8): e1700764, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29577667

RESUMO

Many conditions have to be optimized in order to be able to grow the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis) for an extended period of time under physiologically well-defined and constant conditions. It is still poorly understood what limits growth of this organism in batch and continuous cultures in BG-11, the standard medium used to grow Synechocystis. Through a series of batch experiments in flasks and continuous mode experiments in advanced photobioreactors, it is shown that the limiting nutrient during batch cultivation is sulfate, the depletion of which leads to ROS formation and rapid bleaching of pigments after entry into stationary phase. In continuous mode, however, the limiting nutrient is iron. Optimizing these growth conditions resulted in a so far highest growth rate of 0.16 h-1 (4.3 h doubling time), which is significantly higher than the textbook value of 0.09 h-1 (8 h doubling time). An improved medium, BG-11 for prolonged cultivation (BG-11-PC) is introduced, that allows for controlled, extended cultivation of Synechocystis, under well-defined physiological conditions. The data present here have implications for mass-culturing of cyanobacteria.


Assuntos
Fotobiorreatores , Synechocystis , Meios de Cultura/química , Meios de Cultura/metabolismo , Ferro/metabolismo , Fotobiorreatores/microbiologia , Fotobiorreatores/normas , Espécies Reativas de Oxigênio/metabolismo , Sulfatos/metabolismo , Synechocystis/crescimento & desenvolvimento , Synechocystis/metabolismo , Synechocystis/fisiologia
19.
Photosynth Res ; 137(2): 307-320, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29600442

RESUMO

Photosynthetic activity and respiration share the thylakoid membrane in cyanobacteria. We present a series of spectrally resolved fluorescence experiments where whole cells of the cyanobacterium Synechocystis sp. PCC 6803 and mutants thereof underwent a dark-to-light transition after different dark-adaptation (DA) periods. Two mutants were used: (i) a PSI-lacking mutant (ΔPSI) and (ii) M55, a mutant without NAD(P)H dehydrogenase type-1 (NDH-1). For comparison, measurements of the wild-type were also carried out. We recorded spectrally resolved fluorescence traces over several minutes with 100 ms time resolution. The excitation light was at 590 nm so as to specifically excite the phycobilisomes. In ΔPSI, DA time has no influence, and in dichlorophenyl-dimethylurea (DCMU)-treated samples we identify three main fluorescent components: PB-PSII complexes with closed (saturated) RCs, a quenched or open PB-PSII complex, and a PB-PSII 'not fully closed.' For the PSI-containing organisms without DCMU, we conclude that mainly three species contribute to the signal: a PB-PSII-PSI megacomplex with closed PSII RCs and (i) slow PB → PSI energy transfer, or (ii) fast PB → PSI energy transfer and (iii) complexes with open (photochemically quenched) PSII RCs. Furthermore, their time profiles reveal an adaptive response that we identify as a state transition. Our results suggest that deceleration of the PB → PSI energy transfer rate is the molecular mechanism underlying a state 2 to state 1 transition.


Assuntos
Transporte de Elétrons/fisiologia , Transferência de Energia/fisiologia , Luz , Fotossíntese/fisiologia , Synechocystis/fisiologia , Regulação Bacteriana da Expressão Gênica , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Ficobilissomas/metabolismo , Espectrometria de Fluorescência , Tilacoides/metabolismo
20.
Appl Environ Microbiol ; 84(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29475867

RESUMO

In many pro- and eukaryotes, a retinal-based proton pump equips the cell to drive ATP synthesis with (sun)light. Such pumps, therefore, have been proposed as a plug-in for cyanobacteria to artificially increase the efficiency of oxygenic photosynthesis. However, little information on the metabolism of retinal, their chromophore, is available for these organisms. We have studied the in vivo roles of five genes (sll1541, slr1648, slr0091, slr1192, and slr0574) potentially involved in retinal metabolism in Synechocystis sp. strain PCC 6803. With a gene deletion approach, we have shown that Synechocystis apo-carotenoid-15,15-oxygenase (SynACO), encoded by gene sll1541, is an indispensable enzyme for retinal synthesis in Synechocystis, presumably via asymmetric cleavage of ß-apo-carotenal. The second carotenoid oxygenase (SynDiox2), encoded by gene slr1648, competes with SynACO for substrate(s) but only measurably contributes to retinal biosynthesis in stationary phase via an as-yet-unknown mechanism. In vivo degradation of retinal may proceed through spontaneous chemical oxidation and via enzyme-catalyzed processes. Deletion of gene slr0574 (encoding CYP120A1), but not of slr0091 or of slr1192, causes an increase (relative to the level in wild-type Synechocystis) in the retinal content in both the linear and stationary growth phases. These results suggest that CYP120A1 does contribute to retinal degradation. Preliminary data obtained using 13C-labeled retinal suggest that conversion to retinol and retinoic acid and subsequent further oxidation also play a role. Deletion of sll1541 leads to deficiency in retinal synthesis and allows the in vivo reconstitution of far-red-absorbing holo-proteorhodopsin with exogenous retinal analogues, as demonstrated here for all-trans 3,4-dehydroretinal and 3-methylamino-16-nor-1,2,3,4-didehydroretinal.IMPORTANCE Retinal is formed by many cyanobacteria and has a critical role in most forms of life for processes such as photoreception, growth, and stress survival. However, the metabolic pathways in cyanobacteria for synthesis and degradation of retinal are poorly understood. In this paper we identify genes involved in its synthesis, characterize their role, and provide an initial characterization of the pathway of its degradation. This led to the identification of sll1541 (encoding SynACO) as the essential gene for retinal synthesis. Multiple pathways for retinal degradation presumably exist. These results have allowed us to construct a strain that expresses a light-dependent proton pump with an action spectrum extending beyond 700 nm. The availability of this strain will be important for further work aimed at increasing the overall efficiency of oxygenic photosynthesis.


Assuntos
Proteínas de Bactérias/genética , Sequência de Bases , Deleção de Sequência , Synechocystis/genética , Proteínas de Bactérias/biossíntese , Expressão Gênica , Rodopsinas Microbianas , Synechocystis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...