Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 147(3): 1158-67, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18508953

RESUMO

Zinc is a potent regulator of programmed cell death (PCD) in animals. While certain, cell-type-specific concentrations of intracellular free zinc are required to protect cells from death, zinc depletion commits cells to death in diverse systems. As in animals, PCD has a fundamental role in plant biology, but its molecular regulation is poorly understood. In particular, the involvement of zinc in the control of plant PCD remains unknown. Here, we used somatic embryos of Norway spruce (Picea abies) to investigate the role of zinc in developmental PCD, which is crucial for correct embryonic patterning. Staining of the early embryos with zinc-specific molecular probes (Zinquin-ethyl-ester and Dansylaminoethyl-cyclen) has revealed high accumulation of zinc in the proliferating cells of the embryonal masses and abrupt decrease of zinc content in the dying terminally differentiated suspensor cells. Exposure of early embryos to a membrane-permeable zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine led to embryonic lethality, as it induced ectopic cell death affecting embryonal masses. This cell death involved the loss of plasma membrane integrity, metacaspase-like proteolytic activity, and nuclear DNA fragmentation. To verify the anti-cell death effect of zinc, we incubated early embryos with increased concentrations of zinc sulfate. Zinc supplementation inhibited developmental PCD and led to suppression of terminal differentiation and elimination of the embryo suspensors, causing inhibition of embryo maturation. Our data demonstrate that perturbation of zinc homeostasis disrupts the balance between cell proliferation and PCD required for plant embryogenesis. This establishes zinc as an important cue governing cell fate decisions in plants.


Assuntos
Padronização Corporal , Desenvolvimento Embrionário , Picea/metabolismo , Sementes/metabolismo , Zinco/metabolismo , Morte Celular , Sobrevivência Celular , Espaço Intracelular/metabolismo , Picea/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento
2.
Tree Physiol ; 24(10): 1181-6, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15294765

RESUMO

Somatic embryos of Norway spruce (Picea abies (L.) Karst.) differentiate from proembryogenic masses (PEMs), which are subject to autodestruction through programmed cell death. In PEMs, somatic embryo formation and activation of programmed cell death are interrelated processes. We sought to determine if activation of programmed cell death in PEMs is caused by genetic aberrations during somatic embryogenesis. Based on the finding that withdrawal of auxin and cytokinin induces programmed cell death in PEMs, 1-week-old cell suspensions were cultured in medium either with or without auxin and cytokinin and then transferred to maturation medium containing abscisic acid. We analyzed the stability of three nuclear simple sequence repeat (SSR) microsatellite markers at successive stages of somatic embryogenesis in two cell lines. There were no mutations at the SSR loci at any of the successive developmental stages from PEMs to cotyledonary embryos, irrespective of whether or not the proliferation medium in which cell suspensions had been cultured contained auxin or cytokinin. The morphologies of plants regenerated from the cultures were similar, although withdrawal of auxin and cytokinin significantly stimulated the yield of both embryos and plants. We conclude, therefore, that the high genetic stability of somatic embryos in Norway spruce is unaffected by the induction of programmed cell death caused by withdrawal of auxin and cytokinin.


Assuntos
Repetições de Microssatélites/genética , Picea/genética , Sementes/genética , Árvores/genética , Linhagem Celular , Picea/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...