Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cephalalgia ; 39(10): 1284-1297, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30917684

RESUMO

PURPOSE: To review pharmacokinetic and pharmacodynamic characteristics of antibodies that bind to soluble ligands within the framework of calcitonin gene-related peptide antibodies. OVERVIEW: Calcitonin gene-related peptide has been implicated in the pathophysiology of migraine. Galcanezumab is an antibody that binds to the ligand calcitonin gene-related peptide. Other antibodies that target calcitonin gene-related peptide include eptinezumab and fremanezumab. To understand how antibodies can affect the extent and duration of free ligand concentrations, it is important to consider the dose and pharmacokinetics of an antibody, and the kinetics of the ligand and antibody-ligand complex. Insights regarding the pharmacokinetic/pharmacodynamic properties of galcanezumab as a probe antibody drug and calcitonin gene-related peptide as its binding ligand regarding its clinical outcomes are provided. DISCUSSION: Antibodies are administered parenterally because oral absorption is limited by gastrointestinal degradation and inefficient diffusion through the epithelium. The systemic absorption of antibodies following intramuscular or subcutaneous administration most likely occurs via convective transport through lymphatic vessels into blood. The majority of antibody elimination occurs via intracellular catabolism into peptides and amino acids following endocytosis. Binding of ligand to an antibody reduces the free ligand that is available to interact with the receptor and efficacy is driven by the magnitude and duration of the reduction in free ligand concentration. A galcanezumab pharmacokinetic/pharmacodynamic model shows that galcanezumab decreases free calcitonin gene-related peptide concentrations in a dose- and time-dependent manner and continues to suppress free calcitonin gene-related peptide with repeated dosing. The model provides evidence for a mechanistic linkage to galcanezumab therapeutic effects for the preventive treatment of migraine.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais/farmacocinética , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/farmacocinética , Peptídeo Relacionado com Gene de Calcitonina/antagonistas & inibidores , Transtornos de Enxaqueca/tratamento farmacológico , Animais , Humanos
2.
Nat Commun ; 4: 2734, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24225533

RESUMO

Alzheimer's disease (AD) belongs to a category of adult neurodegenerative conditions, which are associated with intracellular and extracellular accumulation of neurotoxic protein aggregates. Understanding how these aggregates are formed, secreted and propagated by neurons has been the subject of intensive research, but so far no preventive or curative therapy for AD is available, and clinical trials have been largely unsuccessful. Here we show that deficiency of the lysosomal sialidase NEU1 leads to the spontaneous occurrence of an AD-like amyloidogenic process in mice. This involves two consecutive events linked to NEU1 loss-of-function--accumulation and amyloidogenic processing of an oversialylated amyloid precursor protein in lysosomes, and extracellular release of Aß peptides by excessive lysosomal exocytosis. Furthermore, cerebral injection of NEU1 in an established AD mouse model substantially reduces ß-amyloid plaques. Our findings identify an additional pathway for the secretion of Aß and define NEU1 as a potential therapeutic molecule for AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Exocitose/fisiologia , Lisossomos/metabolismo , Mucolipidoses/genética , Neuraminidase/genética , Animais , Encéfalo/embriologia , Calcimicina/metabolismo , Linhagem Celular , Dependovirus/metabolismo , Hipocampo/embriologia , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Humanos , Camundongos , Camundongos Transgênicos , Neuraminidase/fisiologia , Neurônios/metabolismo , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA