Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(12): 105377, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866630

RESUMO

Lipid rafts are highly ordered membrane domains that are enriched in cholesterol and glycosphingolipids and serve as major platforms for signal transduction. Cell detachment from the extracellular matrix (ECM) triggers lipid raft disruption and anoikis, which is a barrier for cancer cells to metastasize. Compared to single circulating tumor cells (CTCs), our recent studies have demonstrated that CD44-mediatd cell aggregation enhances the stemness, survival and metastatic ability of aggregated cells. Here, we investigated whether and how lipid rafts are involved in CD44-mediated cell aggregation. We found that cell detachment, which mimics the condition when tumor cells detach from the ECM to metastasize, induced lipid raft disruption in single cells, but lipid raft integrity was maintained in aggregated cells. We further found that lipid raft integrity in aggregated cells was required for Rac1 activation to prevent anoikis. In addition, CD44 and γ-secretase coexisted at lipid rafts in aggregated cells, which promoted CD44 cleavage and generated CD44 intracellular domain (CD44 ICD) to enhance stemness of aggregated cells. Consequently, lipid raft disruption inhibited Rac1 activation, CD44 ICD generation, and metastasis. Our findings reveal two new pathways regulated by CD44-mediated cell aggregation via maintaining lipid raft integrity. These findings also suggest that targeting cell aggregation-mediated pathways could be a novel therapeutic strategy to prevent CTC cluster-initiated metastasis.


Assuntos
Receptores de Hialuronatos , Microdomínios da Membrana , Proteínas Monoméricas de Ligação ao GTP , Proteínas rac1 de Ligação ao GTP , Agregação Celular , Matriz Extracelular/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Transdução de Sinais , Células MDA-MB-231 , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Anoikis , Ativação Enzimática , Metástase Neoplásica
2.
Cancers (Basel) ; 15(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37345070

RESUMO

Accumulating evidence demonstrates that circulating tumor cell (CTC) clusters have higher metastatic ability than single CTCs and negatively correlate with cancer patient outcomes. Along with homotypic CTC clusters, heterotypic CTC clusters (such as neutrophil-CTC clusters), which have been identified in both cancer mouse models and cancer patients, lead to more efficient metastasis formation and worse patient outcomes. However, the mechanism by which neutrophils bind to CTCs remains elusive. In this study, we found that intercellular adhesion molecule-1 (ICAM-1) on triple-negative breast cancer (TNBC) cells and CD11b on neutrophils mediate tumor cell-neutrophil binding. Consequently, CD11b deficiency inhibited tumor cell-neutrophil binding and TNBC metastasis. Furthermore, CD11b mediated hydrogen peroxide (H2O2) production from neutrophils. Moreover, we found that ICAM-1 in TNBC cells promotes tumor cells to secrete suPAR, which functions as a chemoattractant for neutrophils. Knockdown of uPAR in ICAM-1+ TNBC cells reduced lung-infiltrating neutrophils and lung metastasis. Bioinformatics analysis confirmed that uPAR is highly expressed in TNBCs, which positively correlates with higher neutrophil infiltration and negatively correlates with breast cancer patient survival. Collectively, our findings provide new insight into how neutrophils bind to CTC to facilitate metastasis and discover a novel potential therapeutic strategy by blocking the ICAM-1-suPAR-CD11b axis to inhibit TNBC metastasis.

3.
Biomedicines ; 11(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37189841

RESUMO

Triple-negative breast cancer (TNBC), characterized by a deficiency in estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor2 (HER2), is among the most lethal subtypes of breast cancer (BC). Nevertheless, the molecular determinants that contribute to its malignant phenotypes such as tumor heterogeneity and therapy resistance, remain elusive. In this study, we sought to identify the stemness-associated genes involved in TNBC progression. Using bioinformatics approaches, we found 55 up- and 9 downregulated genes in TNBC. Out of the 55 upregulated genes, a 5 gene-signature (CDK1, EZH2, CCNB1, CCNA2, and AURKA) involved in cell regeneration was positively correlated with the status of tumor hypoxia and clustered with stemness-associated genes, as recognized by Parametric Gene Set Enrichment Analysis (PGSEA). Enhanced infiltration of immunosuppressive cells was also positively correlated with the expression of these five genes. Moreover, our experiments showed that depletion of the transcriptional co-factor nucleus accumbens-associated protein 1 (NAC1), which is highly expressed in TNBC, reduced the expression of these genes. Thus, the five genes signature identified by this study warrants further exploration as a potential new biomarker of TNBC heterogeneity/stemness characterized by high hypoxia, stemness enrichment, and immune-suppressive tumor microenvironment.

4.
Res Sq ; 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36824757

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, and metastasis is the major cause of cancer morbidity and mortality. Therefore, it is urgent to discover novel therapeutic targets and develop effective treatments for this lethal disease. Circulating tumor cells (CTCs) are considered "seeds of metastasis". Compared to single CTCs, our previous studies have demonstrated that CD44 homophilic interaction mediates CTC aggregation to enhance the stemness, survival and metastatic ability of aggregated cells. Importantly, the presence of CD44+ CTC clusters correlates with a poor prognosis in breast cancer patients. Here, we further investigated the underlying mechanism of how CD44-mediated cell aggregation promotes TNBC metastasis. We found that cell detachment, which mimics the condition when tumor cells detach from the extracellular matrix (ECM) to metastasize, induces lipid raft disruption in single cells, but lipid rafts integrity is maintained in aggregated cells. We further found that lipid rafts integrity in aggregated cells is required for Rac1 activation to prevent anoikis. In addition, CD44 and γ-secretase coexisted at lipid rafts in aggregated cells, which promotes CD44 cleavage and generates CD44 intracellular domain (CD44 ICD) to enhance stemness. Consequently, lipid rafts disruption inhibited Rac1 activation, CD44 ICD generation and metastasis. These data reveal a new mechanism of cell aggregation-mediated TNBC metastasis via maintaining lipid raft integrity after cell detachment. The finding provides a potential therapeutic strategy to prevent CTC cluster-initiated metastasis by disrupting lipid raft integrity and its-mediated downstream pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...