Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 5012, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973343

RESUMO

The low-frequency Raman signals of single-wall carbon nanotubes (SWNTs), appearing in the range of 100-300 cm-1, have been interpreted as radial-breathing mode (RBM) comprising pure radial Eigenvectors. Here, we report that most of the low-frequency and intermediate-frequency signals of SWNTs are radial-tangential modes (RTMs) coexisting radial and tangential Eigenvectors, while only the first peak at the low-frequency side is the RBM. Density functional theory simulation for SWNTs of ~ 2 nm in diameter shows that dozens of RTMs exhibit following the RBM (~ 150 cm-1) up to G-mode (~ 1592 cm-1) in order with Landau regulation. We specify the RBM and the RTM on Raman spectra obtained from SWNTs, where both appear as prominent peaks between 149 and 170 cm-1 and ripple-like peaks between 166 and 1440 cm-1, respectively. We report that the RTMs have been regarded as RBM (~ 300 cm-1) and ambiguously named as intermediate-frequency mode (300-1300 cm-1) without assignment. The RTMs gradually interlink the RBM and the G-mode resulting in the symmetric Raman spectra in intensity. We reveal high-resolution transmission microscope evidence for a helical structure of SWNTs, informing the typical diameter of commercial SWNTs to be 1.4-2 nm.

2.
Sci Rep ; 11(1): 19388, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588578

RESUMO

The gold nanorods (GNRs) embedded alginate-chitosan (scaffold), which was designed and fabricated to produce efficient handling of the cell proliferations. Scaffold embedded GNR (SGNR) and NIR (near infrared) irradiations are developing into an interesting medical prognosis tool for rabbit chondrocyte (RC) proliferation. SGNR contained a pattern of uniform pores. Biocompatibility and cellular proliferation achieved by disclosures to NIR irradiations, providing high cell survival. SGNR and NIR irradiations could produce mechanical and biochemical cues for regulating RCs proliferations. To determine the thermal stress, it exposed RCs to 39-42 °C for 0-240 min at the start point of the cell culture cycle. It produced photothermal stress in cellular surrounding (cells located adjacent to and within scaffold) and it deals with the proliferation behavior of RC. All the processes were modeled with experimental criteria and time evolution process. Our system could help the cell proliferation by generating heat for cells. Hence, the present strategy could be implemented for supporting cell therapeutics after transplantation. This implementation would open new design techniques for integrating the interfaces between NIR irradiated and non-irradiated tissues.


Assuntos
Condrócitos/citologia , Fototerapia/métodos , Animais , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Ouro/química , Nanotubos/química , Coelhos
3.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 77(Pt 2): 260-265, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33843734

RESUMO

Hexagonal boron nitride (h-BN) has been generally interpreted as having an AA stacking sequence. Evidence is presented in this article indicating that typical commercial h-BN platelets (∼10-500 nm in thickness) exhibit stacks of parallel nanosheets (∼10 nm in thickness) predominantly in the AB sequence. The AB-stacked nanosheet occurs as a metastable phase of h-BN resulting from the preferred texture and lateral growth of armchair (110) planes. It appears as an independent nanosheet or unit for h-BN platelets. The analysis is supported by simulation of thin AB films (2-20 layers), which explains the unique X-ray diffraction pattern of h-BN. With this analysis and the role of pressure in commercial high-pressure high-temperature sintering (driving nucleation and parallelizing the in-plane crystalline growth of the nuclei), a growth mechanism is proposed for 2D h-BN (on a substrate) as `substrate-induced 2D growth', where the substrate plays the role of pressure.

4.
ACS Appl Bio Mater ; 4(2): 1493-1498, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014498

RESUMO

A label-free biosensor is described based on the Raman spectroscopic signatures of monolayer graphene, which are modified in the compartment of cancer cells because of electron-phonon coupling in monolayer graphene. Specifically, the Raman spectra of electrostatically gated monolayer graphene on SiO2/Si substrates, in the voltage range from 0 to 5 V, were studied in the absence and the presence of cancer cells. Density functional theory simulations afforded a correlation between cancer cells and the observed Raman spectra, through the regulation of the intensities of the G and 2D Raman vibrational modes with applied voltage. The C-H and N-H bonds of phenylalanine enabled the detection of this biosensing activity. Significantly, this detection can be carried out even in the absence of cancer cell-culturing steps.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Grafite , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos , Análise Espectral Raman/métodos , Linhagem Celular Tumoral , Humanos , Estrutura Molecular
5.
Nanoscale ; 11(17): 8528-8537, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-30990485

RESUMO

Electron-phonon coupling in monolayer graphene results in a modification of its Raman spectra upon charge transfer processes induced by interaction with its chemical environment or the presence of strain or defects in its structure. Modification of Raman spectra is examined in order to develop ultra-sensitive biosensing techniques for the detection, identification, differentiation and classification of bacteria associated with infectious diseases. Specifically, the electrochemical properties of top gated monolayer graphene on SiO2/Si substrates, in the absence and presence of interaction with Gram-positive bacteria (Enterococcus faecalis, Bacillus subtilis) and Gram-negative bacteria (Escherichia coli and Salmonella typhimurium), are probed by Raman spectroscopy in an applied voltage range from 0 V to 3 V. Bacteria and monolayer graphene interactions are thus electrostatically tuned. The resulting correlation of specific bacterial chemical properties and Raman spectral characteristics is reported, along with density functional theory simulations of the charge transfer mechanism. The intensities of the G and D Raman vibrational modes are modulated as a function of the applied voltage in the presence of bacteria, but remain unchanged in bare monolayer graphene. A fingerprint region is also identified in the range of 200 cm-1 to 600 cm-1, with disulfide bonds observed at 490 cm-1, associated with bacterial membrane proteins. Significantly, such observations are detected even in the absence of bacterial culturing, a time-consuming step.


Assuntos
Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Positivas/isolamento & purificação , Grafite/química , Análise Espectral Raman/métodos , Eletricidade , Bactérias Gram-Negativas/química , Bactérias Gram-Positivas/química , Dióxido de Silício/química
6.
J Phys Chem Lett ; 8(12): 2597-2601, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28520429

RESUMO

One of the unsolved fundamental issues of graphene is establishing an appropriate way to discern layers of graphene structures. We report a simple methodology to analyze graphene structures using Raman signals in the range of ∼100 to ∼500 cm-1 comprising clear 118 or 175 cm-1 peaks. We demonstrate that the low-energy signals on Raman spectra of plasma-seeded grown graphene sheets originated from nanocurvature (c) of mono- (175 and 325-500 cm-1 signals) (c ≈ 1 nm) and bilayer (118 cm-1 peak) (c ≈ 2 nm) graphene with Raman simulations, based on Raman radial mode (RM) Eigen vectors. Our RM model provides a standard way of identifying and evaluating graphene structures.

7.
Sci Rep ; 6: 39624, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28000780

RESUMO

Over the history of carbon, it is generally acknowledged that Bernal AB stacking of the sp2 carbon layers is the unique crystalline form of graphite. The universal graphite structure is synthesized at 2,600~3,000 °C and exhibits a micro-polycrystalline feature. In this paper, we provide evidence for a metastable form of graphite with an AA' structure. The non-Bernal AA' allotrope of graphite is synthesized by the thermal- and plasma-treatment of graphene nanopowders at ~1,500 °C. The formation of AA' bilayer graphene nuclei facilitates the preferred texture growth and results in single-crystal AA' graphite in the form of nanoribbons (1D) or microplates (2D) of a few nm in thickness. Kinetically controlled AA' graphite exhibits unique nano- and single-crystalline feature and shows quasi-linear behavior near the K-point of the electronic band structure resulting in anomalous optical and acoustic phonon behavior.

8.
Phys Chem Chem Phys ; 18(31): 21391-7, 2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27425818

RESUMO

Using first-principles calculations, we describe and compare atomistic lithiation, sodiation, and magnesiation processes in black phosphorous with a layered structure similar to graphite for Li-, Na-, and Mg-ion batteries because graphite is not considered to be an electrode material for Na- and Mg-ion batteries. The three processes are similar in that an intercalation mechanism occurs at low Li/Na/Mg concentrations, and then further insertion of Li/Na/Mg leads to a change from the intercalation mechanism to an alloying process. Li and Mg show a columnar intercalation mechanism and prefer to locate in different phosphorene layers, while Na shows a planar intercalation mechanism and preferentially localizes in the same layer. In addition, we compare the mechanical properties of black phosphorous during lithiation, sodiation, and magnesiation. Interestingly, lithiation and sodiation at high concentrations (Li2P and Na2P) lead to the softening of black phosphorous, whereas magnesiation shows a hardening phenomenon. In addition, the diffusion of Li/Na/Mg in black phosphorus during the intercalation process is an easy process along one-dimensional channels in black phosphorus with marginal energy barriers. The diffusion of Li has a lower energy barrier in black phosphorus than in graphite.

9.
Proc Natl Acad Sci U S A ; 108(7): 2674-7, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21282617

RESUMO

Birch reduction of few-layer graphene samples gives rise to hydrogenated samples containing up to 5 wt % of hydrogen. Spectroscopic studies reveal the presence of sp(3) C-H bonds in the hydrogenated graphenes. They, however, decompose readily on heating to 500 °C or on irradiation with UV or laser radiation releasing all the hydrogen, thereby demonstrating the possible use of few-layer graphene for chemical storage of hydrogen. First-principles calculations throw light on the mechanism of dehydrogenation that appears to involve a significant reconstruction and relaxation of the lattice.


Assuntos
Grafite/química , Hidrogênio/química , Nanoestruturas/química , Nanotecnologia/métodos , Cromatografia Gasosa , Temperatura Alta , Hidrogenação , Lasers , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Modelos Químicos , Nanoestruturas/ultraestrutura , Espectrofotometria , Raios Ultravioleta
10.
Chemistry ; 16(1): 149-57, 2010 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-19946909

RESUMO

A new analogue of graphene containing boron, carbon and nitrogen (BCN) has been obtained by the reaction of high-surface-area activated charcoal with a mixture of boric acid and urea at 900 degrees C. X-ray photoelectron spectroscopy and electron energy-loss spectroscopy reveal the composition to be close to BCN. The X-ray diffraction pattern, high-resolution electron microscopy images and Raman spectrum indicate the presence of graphite-type layers with low sheet-to-sheet registry. Atomic force microscopy reveals the sample to consist of two to three layers of BCN, as in a few-layer graphene. BCN exhibits more electrical resistivity than graphene, but weaker magnetic features. BCN exhibits a surface area of 2911 m(2) g(-1), which is the highest value known for a B(x)C(y)N(z) composition. It exhibits high propensity for adsorbing CO(2) ( approximately 100 wt %) at 195 K and a hydrogen uptake of 2.6 wt % at 77 K. A first-principles pseudopotential-based DFT study shows the stable structure to consist of BN(3) and NB(3) motifs. The calculations also suggest the strongest CO(2) adsorption to occur with a binding energy of 3.7 kJ mol(-1) compared with 2.0 kJ mol(-1) on graphene.

11.
J Nanosci Nanotechnol ; 8(8): 4159-62, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19049194

RESUMO

Zirconia nanoparticles were prepared by microwave synthesis from zirconium acetate hydroxide. The samples were characterized by various techniques like X-ray diffraction (XRD), Scanning Electron microscopy (SEM), Transmission Electron microscopy (TEM), Raman Spectroscopy (RS). By XRD the average crystallite size is obtained around 10 nm and which is comparable to observation by SEM and TEM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...