Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3391, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336908

RESUMO

In this study, the efficacy of the promising iron-based polymeric inorganic coagulant (POFC) was assessed for the reduction of eutrophication effect (freshwater toxicity) and the microbial loads from wastewater. Toxicity assessment for POFC was conducted on mice and skin cell lines. The results confirm the lower toxicity level of POFC. The POFC showed excellent antibacterial efficacy against Gram-positive and Gram-negative bacteria. Moreover, it demonstrated a remarkable effectiveness against black fungus such as Aspergillus niger and Rhizopus oryzae. Additionally, POFC showed antiviral effectiveness against the highly pathogenic H5N1 influenza virus as well as Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). POFC-based treatment gives excellent removal percentages for phosphate, and phosphorus at doses below 60 ppm with a low produced sludge volume that leads to 84% decrease in the rate of eutrophication and freshwater toxicity. At a POFC concentration of 60 ppm, remarkable reduction rates for total coliforms, fecal coliforms, and E. coli were achieved. After POFC-based coagulation, the produced sludge retains a lower bacterial density due to the antibacterial activity of POFC. Furthermore, it revealed that the observed removal efficiencies for fungi and yeasts in the produced sludge reached 85% at a POFC dose of 60 ppm. Overall, our research indicates that POFC has potential for application in pre-treatment of wastewater and serves as an antimicrobial agent.


Assuntos
Anti-Infecciosos , Virus da Influenza A Subtipo H5N1 , Camundongos , Animais , Águas Residuárias , Esgotos , Antibacterianos/farmacologia , Escherichia coli , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Anti-Infecciosos/farmacologia , SARS-CoV-2 , Polímeros , Eutrofização
2.
J Biomater Appl ; 38(3): 351-360, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37604458

RESUMO

Atomic substitution or doping of a bioceramic material hydroxyapatite (HA) with specific ions is an appealing approach for improving its biocompatibility and activity, as well as imparting antibacterial properties. In this study, selenium- and/or copper-substituted hydroxyapatite powders were synthesized by an aqueous precipitation method and using the freeze-drying technique. The molar concentrations of constituents were calculated based on the proposed mechanism whereby selenium (Se4+) ions partially substitute phosphorus (P5+) sites, and copper (Cu2+) ions partially substitute (Ca2+) sites in the HA lattice. Dried precipitated samples were characterized using Inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FTIR) and Field-emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FESEM-EDX). Accordingly, substitution of Se4+ and/or Cu2+ ions took place in the crystal lattice of HA without the formation of any impurities. The presence of sulphur (S2-) ions in the hydroxyapatite was detected by ICP-OES in all samples with copper substituted in the lattice. The cytotoxicity of the powders on osteoblastic (MC3T3-E1) cells was evaluated in vitro. Selenium substituted hydroxyapatite (SeHA), at the concentration (200 µg/mL), demonstrated higher populations of the live cells than that of control (cells without powders), suggesting that selenium may stimulate the proliferation of these cells. In addition, the copper substituted hydroxyapatite (CuHA) and the selenium and copper substituted hydroxyapatite (SeCuHA) at the concentrations (200 and 300 µg/mL) and (200 µg/mL), respectively demonstrated better results than the unsubstituted HA. Antimicrobial activity was assessed using a well-diffusion method against Streptococcus mutans and Candida albicans, and superior results has obtained with SeCuHA samples. Presented findings imply that selenium and/or copper substituted modified hydroxyapatite nanoparticles, may be an attractive antimicrobial and cytocompatible substrate to be considered for use in a range of translational applications.


Assuntos
Selênio , Cobre , Pós , Antibacterianos/farmacologia , Durapatita
3.
J Mater Chem B ; 11(30): 7144-7159, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37403540

RESUMO

Microbial infection is the most common obstacle in the wound healing process, leading to wound healing impairment and complications and ultimately increasing morbidity and mortality. Due to the rising number of pathogens evolving resistance to the existing antibiotics used for wound care, alternative approaches are urgently required. In this study, α-aminophosphonate derivatives as antimicrobial agents were synthesized and incorporated into self-crosslinked tri-component cryogels composed of fully hydrolyzed polyvinyl alcohol (PVA-F), partially hydrolyzed polyvinyl alcohol (PVA-P), and cellulose nanofibrils (CNFs). Initially, the antimicrobial activity of four α-aminophosphonate derivatives against selected skin bacterial species was tested and their minimum inhibitory concentration was determined based on which the most effective compound was loaded into the cryogels. Next, the physical and mechanical properties of cryogels with various blending ratios of PVA-P/PVA-F and fixed amounts of CNFs were assessed, and drug release profiles and biological activities of drug-loaded cryogels were analyzed. Assessment of α-aminophosphonate derivatives showed the highest efficacy of a cinnamaldehyde-based derivative (Cinnam) against both Gram-negative and Gram-positive bacteria compared to other derivatives. The physical and mechanical properties of cryogels showed that PVA-P/PVA-F with a 50/50 blending ratio had the highest swelling ratio (1600%), surface area (523 m2 g-1), and compression recoverability (72%) compared to that with other blending ratios. Finally, antimicrobial and biofilm development studies showed that the cryogel loaded with a Cinnam amount of 2 mg (relative to polymer weight) showed the most sustained drug release profile over 75 h and had the highest efficacy against Gram-negative and Gram-positive bacteria. In conclusion, self-crosslinked tri-component cryogels loaded with the synthesized α-aminophosphonate derivative, having both antimicrobial and anti-biofilm formation properties, can have a significant impact on the management of uprising wound infection.


Assuntos
Anti-Infecciosos , Criogéis , Álcool de Polivinil , Celulose , Bandagens
4.
Sci Rep ; 13(1): 9458, 2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301893

RESUMO

Despite their threatens for Egyptian stone monuments, A few studies focused on using biocontrol agents against deteriorative fungi and bacteria instead of using chemical assays that leave residuals leading to human toxicity and environmental pollution. This work aims to isolate and identify fungal and bacterial isolates that showed deteriorative activities from stone monuments in Temple of Hathor, Luxor, Egypt, as well as determine the inhibitory activity of metabolites produced by Streptomyces exfoliatus SAMAH 2021 against the identified deteriorative fungal and bacterial strains. Moreover, studying the spectral analysis, toxicological assessment of metabolites produced by S. exfoliatus SAMAH 2021 against health human cell fibroblast, and colorimetric measurements on the selected stone monuments. Ten samples were collected from Temple of Hathor, Luxor, Egypt. Three fungal isolates and one bacterial isolate were obtained and identified as A. niger isolate Hathor 2, C. fioriniae strain Hathor 3, P. chrysogenum strain HATHOR 1, and L. sphaericus strain Hathor 4, respectively. Inhibitory potential of the metabolites in all concentrations used (100-25%) against the recommended antibiotics (Tetracycline 10 µg/ml and Doxycycline (30 µg/ml) showed an inhibitory effect toward all tested deteriorative pathogens with a minimum inhibition concentration (MIC) of 25%. Cytotoxicity test confirmed that microbial filtrate as the antimicrobial agent was safe for healthy human skin fibroblast with IC50 of < 100% and cell viability of 97%. Gas chromatography analysis recorded the existence of thirteen antimicrobial agents, Cis-vaccenic acid; 1,2-Benzenedicarboxylic acid; ç-Butyl-ç-butyrolactone and other compounds. Colorimetric measurements confirmed no color or surface change for the limestone-treated pieces. The use of the metabolite of microbial species antimicrobial as a biocontrol agent raises contemporary issues concerning the bio-protection of the Egyptian monuments to reduce chemical formulas that are toxic to humans and pollute the environment. Such serious problems need further investigation for all kinds of monuments.


Assuntos
Anti-Infecciosos , Streptomyces , Humanos , Egito , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Streptomyces/metabolismo , Testes de Sensibilidade Microbiana
5.
PLoS One ; 18(3): e0282729, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36888689

RESUMO

The leaves of Azadirachta indica L. and Melia azedarach L., belonging to Meliaceae family, have been shown to have medicinal benefits and are extensively employed in traditional folk medicine. Herein, HPLC analysis of the ethyl acetate fraction of the total methanolic extract emphasized the enrichment of both A. indica L., and M. azedarach L. leaves extracts with phenolic and flavonoids composites, respectively. Besides, 4 limonoids and 2 flavonoids were isolated using column chromatography. By assessing the in vitro antiviral activities of both total leaves extracts against Severe Acute Respiratory Syndrome Corona virus 2 (SARS-CoV-2), it was found that A. indica L. and M. azedarach L. have robust anti-SARS-CoV-2 activities at low half-maximal inhibitory concentrations (IC50) of 8.451 and 6.922 µg/mL, respectively. Due to the high safety of A. indica L. and M. azedarach L. extracts with half-maximal cytotoxic concentrations (CC50) of 446.2 and 351.4 µg/ml, respectively, both displayed extraordinary selectivity indices (SI>50). A. indica L. and M. azedarach L. leaves extracts could induce antibacterial activities against both Gram-negative and positive bacterial strains. The minimal inhibitory concentrations of A. indica L. and M. azedarach L. leaves extracts varied from 25 to 100 mg/mL within 30 min contact time towards the tested bacteria. Our findings confirm the broad-spectrum medicinal value of A. indica L. and M. azedarach L. leaves extracts. Finally, additional in vivo investigations are highly recommended to confirm the anti-COVID-19 and antimicrobial activities of both plant extracts.


Assuntos
Azadirachta , COVID-19 , Melia azedarach , SARS-CoV-2 , Antibacterianos/farmacologia , Antibacterianos/análise , Bactérias , Extratos Vegetais/farmacologia , Extratos Vegetais/análise , Folhas de Planta/química , Flavonoides/farmacologia , Flavonoides/análise
6.
Sci Rep ; 13(1): 1255, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690637

RESUMO

Formation of electrogenic microbial biofilm on the electrode is critical for harvesting electrical power from wastewater in microbial biofuel cells (MFCs). Although the knowledge of bacterial community structures in the biofilm is vital for the rational design of MFC electrodes, an in-depth study on the subject is still awaiting. Herein, we attempt to address this issue by creating electrogenic biofilm on modified graphite anodes assembled in an air-cathode MFC. The modification was performed with reduced graphene oxide (rGO), polyaniline (PANI), and carbon nanotube (CNTs) separately. To accelerate the growth of the biofilm, soybean-potato composite (plant) powder was blended with these conductive materials during the fabrication of the anodes. The MFC fabricated with PANI-based anode delivered the current density of 324.2 mA cm-2, followed by CNTs (248.75 mA cm-2), rGO (193 mA cm-2), and blank (without coating) (151 mA cm-2) graphite electrodes. Likewise, the PANI-based anode supported a robust biofilm growth containing maximum bacterial cell densities with diverse shapes and sizes of the cells and broad metabolic functionality. The alpha diversity of the biofilm developed over the anode coated with PANI was the loftiest operational taxonomic unit (2058 OUT) and Shannon index (7.56), as disclosed from the high-throughput 16S rRNA sequence analysis. Further, within these taxonomic units, exoelectrogenic phyla comprising Proteobacteria, Firmicutes, and Bacteroidetes were maximum with their corresponding level (%) 45.5, 36.2, and 9.8. The relative abundance of Gammaproteobacteria, Clostridia, and Bacilli at the class level, while Pseudomonas, Clostridium, Enterococcus, and Bifidobacterium at the genus level were comparatively higher in the PANI-based anode.


Assuntos
Fontes de Energia Bioelétrica , Grafite , Fontes de Energia Bioelétrica/microbiologia , Grafite/química , RNA Ribossômico 16S/genética , Biofilmes , Bactérias/genética , Eletrodos , Firmicutes/genética
7.
Acta Trop ; 238: 106806, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36574894

RESUMO

Industrial wastewater can possibly change the microbial ecological environment. There are few studies that focus on the bacterial variety in textile wastewater effluents and after combination with domestic wastewater. Thus, this study aimed to determine dye degrading bacteria from textile wastewater and environmental water samples using cultural method followed by phenotypic using BIOLOG and genotypic identification (16S rRNA) for dye degrading isolates identifications. Moreover, the bacterial communities in three textile and four environmental samples using Illumina MiSeq high-throughput sequencing were investigated. The findings revealed that in textile water samples, the ratio of dye-degrading bacteria (DDB) to total bacterial counts (TBC) was 27%. The identified DDB genera by 16S rRNA based on the cultural approach were Citrobacter spp., Klebsiella spp., Enterobacter spp., Pseudomonas spp., and Aeromonas spp. Regarding to the metagenomics analyses, the environmental samples had 5,598 Operational Toxanomic Units (OTUs) more than textile wastewater samples (1,463 OTUs). Additionally, the most abundant phyla in the textile wastewater were Proteobacteria (24.45-94.83%), Bacteriodetes (0.5-44.84%) and Firmicutes (3.72-67.40%), while, Proteobacteria (30.8-76.3%), bacteroidetes (8.5-50%) and Acentobacteria (0.5-23.12%) were the most abundant phyla in the environmental samples. The maximum abundant bacteria at species level in environmental samples were Aquabacterium parvum (36.71%), Delftia tsuruhatensis (17.61%), Parabacteriodes chartae (15.39%) and Methylorubrum populi (7.51%) in El-Rahawy Drain water (RDW), River Nile water (RNW), wastewater (RWW) from WWTP in Zennin and El-Rahawy Drain sediment (RDS), respectively, whereas the maximum abundant bacteria at species level in textile wastewater were Alkalibacterium pelagium (34.11%), Enterobacter kobei (26.09%) and Chryseobacterium montanum (16.93%) in factory 1 (HBT) sample, SHB sample (before mixing with domestic wastewater) and SHB sample (after mixing with domestic wastewater), respectively. In conclusion, the microbial communities in textile wastewaters are similar to those in environmental samples at the phylum level but distinct at the genus and species levels because they are exposed to a wider range of environmental circumstances.


Assuntos
Águas Residuárias , Água , RNA Ribossômico 16S/genética , Bactérias , Sequenciamento de Nucleotídeos em Larga Escala , Têxteis
8.
Molecules ; 27(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36234993

RESUMO

Malachite green (MG) dye is a common environmental pollutant that threatens human health and the integrity of the Earth's ecosystem. The aim of this study was to investigate the potential biodegradation of MG dye by actinomycetes species isolated from planted soil near an industrial water effluent in Cairo, Egypt. The Streptomyces isolate St 45 was selected according to its high efficiency for laccase production. It was identified as S. exfoliatus based on phenotype and 16S rRNA molecular analysis and was deposited in the NCBI GenBank with the gene accession number OL720220. Its growth kinetics were studied during an incubation time of 144 h, during which the growth rate was 0.4232 (µ/h), the duplication time (td) was 1.64 d, and multiplication rate (MR) was 0.61 h, with an MG decolorization value of 96% after 120 h of incubation at 25 °C. Eleven physical and nutritional factors (mannitol, frying oil waste, MgSO4, NH4NO3, NH4Cl, dye concentration, pH, agitation, temperature, inoculum size, and incubation time) were screened for significance in the biodegradation of MG by S. exfoliatus using PBD. Out of the eleven factors screened in PBD, five (dye concentration, frying oil waste, MgSO4, inoculum size, and pH) were shown to be significant in the decolorization process. Central composite design (CCD) was applied to optimize the biodegradation of MG. Maximum decolorization was attained using the following optimal conditions: food oil waste, 7.5 mL/L; MgSO4, 0.35 g/L; dye concentration, 0.04 g/L; pH, 4.0; and inoculum size, 12.5%. The products from the degradation of MG by S. exfoliatus were characterized using high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). The results revealed the presence of several compounds, including leuco-malachite green, di(tert-butyl)(2-phenylethoxy) silane, 1,3-benzenedicarboxylic acid, bis(2-ethylhexyl) ester, 1,4-benzenedicarboxylic acid, bis(2-ethylhexyl) ester, 1,2-benzenedicarboxylic acid, di-n-octyl phthalate, and 1,2-benzenedicarboxylic acid, dioctyl ester. Moreover, the phytotoxicity, microbial toxicity, and cytotoxicity tests confirmed that the byproducts of MG degradation were not toxic to plants, microbes, or human cells. The results of this work implicate S. exfoliatus as a novel strain for MG biodegradation in different environments.


Assuntos
Poluentes Ambientais , Streptomyces , Biodegradação Ambiental , Corantes/química , Ecossistema , Ésteres , Humanos , Lacase , Manitol , RNA Ribossômico 16S/genética , Corantes de Rosanilina , Silanos , Solo , Streptomyces/genética , Streptomyces/metabolismo , Água
9.
Sci Rep ; 12(1): 16417, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180517

RESUMO

The prime objective of the current investigation is to evaluate a promising alternative method for disinfection wastewater using a novel electro-oxidation unit. The study focused on determining the best-operating conditions from a techno-economic point of view to be applied to continuous flow simulating actual disinfection modules. The treatment unit consisted of a Plexiglas container with a 3 L volume containing nine cylindrical shape electrodes (6 graphite as anode and 3 stainless steel as a cathode) connected to a variable DC power supply. Determination of the best operating parameters was investigated in batch mode on synthetic wastewater by studying the effect of contact time, current density (CD), total dissolved solids concentration (TDS), and bacterial density. Moreover, the continuous mode experiment was considered on real wastewater from an agricultural drain and the secondary wastewater treatment plant effluent before chlorination. The batch mode results revealed that the best applicable operational conditions that achieved the complete removal of E. coli were at a contact time of less than 5 min, TDS of 2000 mg/L, and CD of 4 mA/cm2. Application of these conditions on the continuous mode experiment indicated the complete removal of all bacterial indicators after 5 min in the drainage wastewater and after 3 min in the secondary treated wastewater. Physico-chemical characterization also suggested that no chlorine by-products displaying the hydroxide ion formed due to water electrolysis is the main reason for prohibiting the growth of pathogenic microbes. The electrical consumption was calculated in the continuous mode and found to be 0.5 kWh/m3 with an operational cost of about 0.06 $/m3, including the cost of adding chemicals to increase the TDS. The results proved that this novel electro-oxidation unit is a robust and affordable disinfection method for complete bacterial removal from wastewater and is more environmentally benign than other conventional disinfection methods.


Assuntos
Grafite , Poluentes Químicos da Água , Purificação da Água , Bactérias , Desinfecção/métodos , Eletrodos , Escherichia coli , Polimetil Metacrilato , Aço Inoxidável , Águas Residuárias/microbiologia , Água , Poluentes Químicos da Água/química , Purificação da Água/métodos
10.
Micromachines (Basel) ; 13(7)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35888900

RESUMO

The development of robust bioanalytical devices and biosensors for infectious pathogens is progressing well with the advent of new materials, concepts, and technology. The progress is also stepping towards developing high throughput screening technologies that can quickly identify, differentiate, and determine the concentration of harmful pathogens, facilitating the decision-making process for their elimination and therapeutic interventions in large-scale operations. Recently, much effort has been focused on upgrading these analytical devices to an intelligent technological platform by integrating them with modern communication systems, such as the internet of things (IoT) and machine learning (ML), to expand their application horizon. This review outlines the recent development and applications of bioanalytical devices and biosensors to detect pathogenic microbes in environmental samples. First, the nature of the recent outbreaks of pathogenic microbes such as foodborne, waterborne, and airborne pathogens and microbial toxins are discussed to understand the severity of the problems. Next, the discussion focuses on the detection systems chronologically, starting with the conventional methods, advanced techniques, and emerging technologies, such as biosensors and other portable devices and detection platforms for pathogens. Finally, the progress on multiplex assays, wearable devices, and integration of smartphone technologies to facilitate pathogen detection systems for wider applications are highlighted.

11.
Environ Sci Pollut Res Int ; 29(51): 77238-77252, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35676578

RESUMO

Water decontamination from toxic dyes and pathogenic microorganisms is critical for life on Earth. Herein, we report the synthesis of sulfone biscompound containing 1,2,3-triazole moiety and evaluation of its dye decolorization and biocidal and disinfection efficiencies. The decolorization efficiency was tested under different experimental conditions, while the biocidal action was examined against various types of waterborne pathogens, and the disinfection of some pathogenic microbes was executed in artificially contaminated water. The findindgs illustrated that the solution initial pH (pHi) affected the decolorization efficiency significantly. About complete removal of 10 mg/L malachite green (MG) dye was achieved after 10 min using 3 g/L of the sulfone biscompound at pHi 6. The pseudo-second-order equation suited the adsorption kinetics accurately, while the equilibrium data was suited by Langmuir isotherm model. Electrostatic, n-π, and π-π interactions brought about the adsorption of MG onto the sulfone biscompound. The biocidal results indicated that the sulfone biscompound had a powerful antibacterial potential against the tested bacterial species. Likewise, the distinction trail revealed that after 70-90 min of direct contact with an effective dose, the tested pathogens could be completely eliminated (6-log reduction). Overall, the newly synthesized sulfone biscompound can efficiently remove cationic dyes and disinfect contaminated water.


Assuntos
Desinfecção , Poluentes Químicos da Água , Triazóis/farmacologia , Corantes/química , Adsorção , Cinética , Poluentes Químicos da Água/química , Água/química , Sulfonas , Antibacterianos , Concentração de Íons de Hidrogênio , Termodinâmica
12.
Sci Rep ; 12(1): 9855, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701523

RESUMO

This article investigates the effect of Ni2+ content on structural (XRD, XPS), morphological (TEM), and magnetic behaviors of silica magnesium zirconium copper nanoceramics calcined at 800 °C. The sol-gel route is followed for the silica magnesium zirconium copper/(0.0-0.7) Ni2+ samples preparation. X-ray photoelectron spectroscopy is employed to analyze the chemical states of elements for the samples. The three representative binding energy magnitudes for O, Ni, and Cu reside at 534, 857, and 979 eV, consecutively. The saturation magnetization constricts with the elevation of Ni2+ content, while the magnetic hysteresis loop resembles the superparamagnetic attitude. The optical spectra present the possibility of direct and indirect transitions in the prepared nanoceramics. Energy gap (value and type), refractive index, and real and imaginary dielectric constant were extracted. The energy gap approaches 3.75 eV and 3.71 eV for direct and indirect transitions correspondingly with (0.7) Ni2+. The antimicrobial and the toxicity performance of all inspected nanocomposites were conducted against pathogenic microbes. The attained results evidenced that SMZC-0.7Ni possesses energetic antimicrobial potential against all targeted microbes. The investigated SMZC-0.7Ni nanocomposite functioned to eradicate frequent waterborne pathogens in wastewater at an appropriate dose (100 mg/L), demonstrating that SMZC can be utilized as a competent disinfectant in the municipal wastewater decontamination process. Inherently, SMZC-0.7Ni can be employed as an excellent nano-weapon against multiple dangerous microorganisms.


Assuntos
Anti-Infecciosos , Purificação da Água , Antibacterianos , Cobre/química , Magnésio , Dióxido de Silício/química , Águas Residuárias , Zircônio/química
13.
Carbohydr Polym ; 291: 119656, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35698357

RESUMO

We study the microstructure, optical, thermal, dielectric, and mechanical properties of flexible oxidized cellulose (OC) films loaded with different mass fractions of cubic structure Bi0.5Na0.25K0.25TiO3 by blending solution technique and casting method. The films were characterized using infrared, X-ray diffraction, scanning electron microscopy, and UV-visible spectroscopy. The optical results confirmed the formation of crystalline bismuth sodium titanate/OC semiconductor films with a direct energy bandgap (3.002-3.276 eV) and have the ability for optoelectronic applications. The dielectric constant and dielectric loss of OC /BNKT film decreased obviously with increasing frequency. However, the ferroelectric state of the BNKT and its correlation with structure verified the existence of a relaxer behavior to this ratio. OC film with 20% dopped BNKT displayed energetic bactericidal activity against Gram-positive and Gram-negative bacteria. The presented study suggested that this film can be used as an antibacterial packaging material to diminish packaging's adverse environmental impacts with non-cytotoxicity.


Assuntos
Celulose Oxidada , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Difração de Raios X
14.
Molecules ; 27(11)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35684551

RESUMO

Novel 1,3,4-thiadiazole derivatives were synthesized through the reaction of methyl 2-(4-hydroxy-3-methoxybenzylidene) hydrazine-1-carbodithioate and the appropriate hydrazonoyl halides in the presence of a few drops of diisopropylethylamine. The chemical structure of the newly fabricated compounds was inferred from their microanalytical and spectral data. With the increase in microbial diseases, fungi remain a devastating threat to human health because of the resistance of microorganisms to antifungal drugs. COVID-19-associated pulmonary aspergillosis (CAPA) and COVID-19-associated mucormycosis (CAM) have higher mortality rates in many populations. The present study aimed to find new antifungal agents using the disc diffusion method, and minimal inhibitory concentration (MIC) values were estimated by the microdilution assay. An in vitro experiment of six synthesized chemical compounds exhibited antifungal activity against Rhizopus oryzae; compounds with an imidazole moiety, such as the compound 7, were documented to have energetic antibacterial, antifungal properties. As a result of these findings, this research suggests that the synthesized compounds could be an excellent choice for controlling black fungus diseases. Furthermore, a molecular docking study was achieved on the synthesized compounds, of which compounds 2, 6, and 7 showed the best interactions with the selected protein targets.


Assuntos
Anti-Infecciosos , COVID-19 , Tiadiazóis , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Bactérias , Fungos , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tiadiazóis/química , Tiadiazóis/farmacologia
15.
Int J Biol Macromol ; 205: 703-718, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35248607

RESUMO

Current research targets innovative medical textiles of nanofibrous nature and antibacterial activity to prevent diaper dermatitis. The work is based on electrospun nanofibers from cellulose acetate (CA) and lignin (Lig) polymers. A series of new copper complexes were synthesized and loaded to the CA/Lig solution mix then subjected to electrospinning, giving rise to the tricomponent bioactive mats CA/Lig/Cu-complex. The surface morphology of electrospun nanofiber mats was smooth and homogenous as the concentration of lignin increased in the mixture. The incorporation of lignin improved the electrospinnability of the cellulose acetate; however, it increased the fiber diameter. The water contact angle, absorption underload were significantly improved as lignin content increased. The incorporation of Cu-complex in electrospun CA and CA/Lig fiber mats occurred without any substantial change in the surface morphology, indicating well encapsulation of the complex. The electrospun mats were active against Pseudomonas aeruginosa, Acinetobacter baumannii, Staphylococcus epidermidis, and Streptococcus faecalis. The cytotoxicity, protein leakage, and biological results, together with the above studies, would advocate copper complex loaded CA/Lig nanofibers as a potential candidate for hygienic applications.


Assuntos
Dermatite , Nanofibras , Celulose/análogos & derivados , Cobre , Humanos , Lignina/farmacologia
16.
Molecules ; 26(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34443405

RESUMO

In this study, a new synthetic 1,2,3-triazole-containing disulfone compound was derived from dapsone. Its chemical structure was confirmed using microchemical and analytical data, and it was tested for its in vitro antibacterial potential. Six different pathogenic bacteria were selected. MICs values and ATP levels were determined. Further, toxicity performance was measured using MicroTox Analyzer. In addition, a molecular docking study was performed against two vital enzymes: DNA gyrase and Dihydropteroate synthase. The results of antibacterial abilities showed that the studied synthetic compound had a strong bactericidal effect against all tested bacterial strains, as Gram-negative species were more susceptible to the compound than Gram-positive species. Toxicity results showed that the compound is biocompatible and safe without toxic impact. The molecular docking of the compound showed interactions within the pocket of two enzymes, which are able to stabilize the compound and reveal its antimicrobial activity. Hence, from these results, this study recommends that the established compound could be an outstanding candidate for fighting a broad spectrum of pathogenic bacterial strains, and it might therefore be used for biomedical and pharmaceutical applications.


Assuntos
Antibacterianos/química , Di-Hidropteroato Sintase/antagonistas & inibidores , Sulfonas/química , Triazóis/química , Antibacterianos/farmacologia , DNA Girase/química , DNA Girase/farmacologia , Dapsona/química , Di-Hidropteroato Sintase/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/enzimologia , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonas/farmacologia , Inibidores da Topoisomerase II/química , Triazóis/farmacologia
17.
World J Microbiol Biotechnol ; 37(2): 36, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33507414

RESUMO

A variety of pathogenic microorganisms can survive in the drinking water distribution systems (DWDS) by forming stable biofilms and, thus, continually disseminating their population through the system's dynamic water bodies. The ingestion of the pathogen-contaminated water could trigger a broad spectrum of illnesses and well-being-related obstacles. These waterborne diseases are a significant concern for babies, pregnant women, and significantly low-immune individuals. This review highlights the recent advances in understanding the microbiological aspects of drinking water quality, biofilm formation and its dynamics, health issues caused by the emerging microbes in biofilm, and approaches for biofilm investigation its prevention and suppression in DWDS.


Assuntos
Biofilmes/crescimento & desenvolvimento , Água Potável/microbiologia , Doenças Transmitidas pela Água/microbiologia , Humanos , Vigilância da População , Saúde Pública , Doenças Transmitidas pela Água/epidemiologia , Doenças Transmitidas pela Água/prevenção & controle
18.
J Environ Manage ; 270: 110816, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32501235

RESUMO

Disinfection using chlorine has paramount importance in the treatment of either drinking water or sewage since it can kill and inhibit all waterborne pathogens, but it may result in carcinogenic substances when interacting with organic matter. An eco-friendly sol-gel process with citrate was used to prepare the nano-cubic activated nickel-zinc ferrite magnetic nanostructures (Ni0.6Zn0.4Fe2O4 and Ni0.6Zn0.2Ce0.2Fe2O4). The activated nanomagnetic samples were characterized using XRD, HR-TEM, HR-SEM, FTIR, and VSM techniques. The structural and magnetic results showed that the nano-cubes magnetic-structures exhibited higher crystalline degrees and an increase in the total magnetization, enabling spinel nano-ferrite to possess potentials for excellent industry various applications. Likewise, the VSM results reveal that Ce2O3 had a significant influence on the magnetic behavior such as the coercivity (Hc; 69.226-133.15) saturation and magnetization (Ms; 24.562-52.174). The results revealed that all Magnetic nanoparticles (MNPs) had an outstanding inhibitory effect on microbes tested. The manufactured particles showed a remarkable ability to eliminate pathogenic bacteria in real sewage samples. The results obtained endorsed that the manufactured magnetic nanoparticles (MNPs) are powerful nano-weapons with an excellent anticipated output for the deactivation of pathogenic microbes during sewage treatment, with, nickel-zinc-cerium ferrite being more effective in inhibiting microbial growth than nickel-zinc-cerium ferrite.


Assuntos
Nanopartículas , Nanoestruturas , Fenômenos Magnéticos , Magnetismo , Esgotos
20.
Environ Sci Pollut Res Int ; 27(21): 26668-26680, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32378108

RESUMO

Herein, we successfully synthesized nano-porous Co2O3/Cu2O3: Al2O3: SiO2 ((0, 5, 7, 9) Co-CAS) using the acidic sol-gel approach and calcined at 800 °C for 4 h. The crystallization behavior and spectroscopic properties were investigated using X-ray diffraction, field emission-scanning electron microscopy, and Fourier-transform infrared absorption spectra analysis. The antibiotic properties of the nano-porous CAS, 5Co-CAS, and 9Co-CAS magnetic nanocomposites was studied against some potentially pathogenic bacteria in water and wastewater samples. The bacteria tested included Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa, Listeria monocytogenes, Staphylococcus aureus, Enterococcus faecalis, and Bacillus subtilis. Incorporating Co2O3 resulted in the identification of three peaks at 2θ = 10.2°, 13.4°, and 15°. The introduction of cobalt nanoparticles created a ferromagnetic behavior in the CAS nanoceramic, with the magnetic moment and saturation values increasing with increased Co2O3 doping. 9Co-CAS was most potent against all the tested pathogens with minimum inhibitory concentrations of 25 mg/L within 40 min for E. coli and P. aeruginosa and 50 mg/L within 10 min for S. enterica; the lowest antibacterial activity was observed with the unmodified CAS. The findings revealed that the manufactured nanocomposite materials were potent disinfectants with a promising application for water and wastewater treatment.


Assuntos
Desinfetantes , Nanocompostos , Antibacterianos , Escherichia coli , Fenômenos Magnéticos , Testes de Sensibilidade Microbiana , Silicatos , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier , Águas Residuárias , Água , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...