Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(1): e0296065, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38261554

RESUMO

Calcium (Ca2+) is a key second messenger in eukaryotes, with store-operated Ca2+ entry (SOCE) being the main source of Ca2+ influx into non-excitable cells. ORAI1 is a highly Ca2+-selective plasma membrane channel that encodes SOCE. It is ubiquitously expressed in mammals and has been implicated in numerous diseases, including cardiovascular disease and cancer. A number of small molecules have been identified as inhibitors of SOCE with a variety of potential therapeutic uses proposed and validated in vitro and in vivo. These encompass both nonselective Ca2+ channel inhibitors and targeted selective inhibitors of SOCE. Inhibition of SOCE can be quantified both directly and indirectly with a variety of assay setups, making an accurate comparison of the activity of different SOCE inhibitors challenging. We have used a fluorescence based Ca2+ addback assay in native HEK293 cells to generate dose-response data for many published SOCE inhibitors. We were able to directly compare potency. Most compounds were validated with only minor and expected variations in potency, but some were not. This could be due to differences in assay setup relating to the mechanism of action of the inhibitors and highlights the value of a singular approach to compare these compounds, as well as the general need for biorthogonal validation of novel bioactive compounds. The compounds observed to be the most potent against SOCE in our study were: 7-azaindole 14d (12), JPIII (17), Synta-66 (6), Pyr 3 (5), GSK5503A (8), CM4620 (14) and RO2959 (7). These represent the most promising candidates for future development of SOCE inhibitors for therapeutic use.


Assuntos
Cálcio , Inibidores da Fusão de HIV , Animais , Humanos , Células HEK293 , Tapsigargina , Bioensaio , Cálcio da Dieta , Mamíferos
2.
Cells ; 11(6)2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-35326494

RESUMO

(1) Abdominal aortic aneurysm (AAA) is a silent, progressive disease with significant mortality from rupture. Whilst screening programmes are now able to detect this pathology early in its development, no therapeutic intervention has yet been identified to halt or retard aortic expansion. The inability to obtain aortic tissue from humans at early stages has created a necessity for laboratory models, yet it is essential to create a timeline of events from EARLY to END stage AAA progression. (2) We used a previously validated ex vivo porcine bioreactor model pre-treated with protease enzyme to create "aneurysm" tissue. Mechanical properties, histological changes in the intact vessel wall, and phenotype/function of vascular smooth muscle cells (SMC) cultured from the same vessels were investigated. (3) The principal finding was significant hyperproliferation of SMC from EARLY stage vessels, but without obvious histological or SMC aberrancies. END stage tissue exhibited histological loss of α-smooth muscle actin and elastin; mechanical impairment; and, in SMC, multiple indications of senescence. (4) Aortic SMC may offer a therapeutic target for intervention, although detailed studies incorporating intervening time points between EARLY and END stage are required. Such investigations may reveal mechanisms of SMC dysfunction in AAA development and hence a therapeutic window during which SMC differentiation could be preserved or reinstated.


Assuntos
Aneurisma da Aorta Abdominal , Animais , Aneurisma da Aorta Abdominal/patologia , Diferenciação Celular , Miócitos de Músculo Liso/patologia , Fenótipo , Suínos
4.
Cells ; 10(4)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923614

RESUMO

Increased cardiovascular morbidity and mortality in individuals with type 2 diabetes (T2DM) is a significant clinical problem. Despite advancements in achieving good glycaemic control, this patient population remains susceptible to macrovascular complications. We previously discovered that vascular smooth muscle cells (SMC) cultured from T2DM patients exhibit persistent phenotypic aberrancies distinct from those of individuals without a diagnosis of T2DM. Notably, persistently elevated expression levels of microRNA-145 co-exist with characteristics consistent with aging, DNA damage and senescence. We hypothesised that increased expression of microRNA-145 plays a functional role in DNA damage signalling and subsequent cellular senescence specifically in SMC cultured from the vasculature of T2DM patients. In this study, markers of DNA damage and senescence were unambiguously and permanently elevated in native T2DM versus non-diabetic (ND)-SMC. Exposure of ND cells to the DNA-damaging agent etoposide inflicted a senescent phenotype, increased expression of apical kinases of the DNA damage pathway and elevated expression levels of microRNA-145. Overexpression of microRNA-145 in ND-SMC revealed evidence of functional links between them; notably increased secretion of senescence-associated cytokines and chronic activation of stress-activated intracellular signalling pathways, particularly the mitogen-activated protein kinase, p38α. Exposure to conditioned media from microRNA-145 overexpressing cells resulted in chronic p38α signalling in naïve cells, evidencing a paracrine induction and reinforcement of cell senescence. We conclude that targeting of microRNA-145 may provide a route to novel interventions to eliminate DNA-damaged and senescent cells in the vasculature and to this end further detailed studies are warranted.


Assuntos
Senescência Celular , Dano ao DNA , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , MicroRNAs/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Idoso , Efeito Espectador/efeitos dos fármacos , Efeito Espectador/genética , Senescência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , MicroRNAs/genética , Miócitos de Músculo Liso/efeitos dos fármacos , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
5.
JCI Insight ; 52019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31393855

RESUMO

It has been hypothesized that interleukin-1alpha (IL-1α) is released from damaged cardiomyocytes following myocardial infarction (MI) and activates cardiac fibroblasts via its receptor (IL-1R1) to drive the early stages of cardiac remodeling. This study aimed to definitively test this hypothesis using cell type-specific IL-1α and IL-1R1 knockout (KO) mouse models. A floxed Il1α mouse was created and used to generate a cardiomyocyte-specific IL-1α KO mouse line (MIL1AKO). A tamoxifen-inducible fibroblast-specific IL-1R1 hemizygous KO mouse line (FIL1R1KO) was also generated. Mice underwent experimental MI (permanent left anterior descending coronary artery ligation) and cardiac function was determined 4 weeks later by conductance pressure-volume catheter analysis. Molecular markers of remodeling were evaluated at various time points by real-time RT-PCR and histology. MIL1AKO mice showed no difference in cardiac function or molecular markers of remodeling post-MI compared with littermate controls. In contrast, FIL1R1KO mice showed improved cardiac function and reduced remodeling markers post-MI compared with littermate controls. In conclusion, these data highlight a key role for the IL-1R1/cardiac fibroblast signaling axis in regulating post-MI remodeling and provide support for the continued development of anti-IL-1 therapies for improving cardiac function after MI. Cardiomyocyte-derived IL-1α was not an important contributor to post-MI remodeling in this model.


Assuntos
Fibroblastos/metabolismo , Infarto do Miocárdio/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo , Remodelação Ventricular/fisiologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Fibrose/metabolismo , Insuficiência Cardíaca , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Masculino , Camundongos , Camundongos Knockout , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Receptores Tipo I de Interleucina-1/genética , Transdução de Sinais
6.
Toxicol Appl Pharmacol ; 351: 46-56, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29775649

RESUMO

Cardiac fibroblasts (CF) are key cells for maintaining extracellular matrix (ECM) protein homeostasis in the heart, and for cardiac repair through CF-to-cardiac myofibroblast (CMF) differentiation. Additionally, CF play an important role in the inflammatory process after cardiac injury, and they express Toll like receptor 4 (TLR4), B1 and B2 bradykinin receptors (B1R and B2R) which are important in the inflammatory response. B1R and B2R are induced by proinflammatory cytokines and their activation by bradykinin (BK: B2R agonist) or des-arg-kallidin (DAKD: B1R agonist), induces NO and PGI2 production which is key for reducing collagen I levels. However, whether TLR4 activation regulates bradykinin receptor expression remains unknown. CF were isolated from human, neonatal rat and adult mouse heart. B1R mRNA expression was evaluated by qRT-PCR, whereas B1R, collagen, COX-2 and iNOS protein levels were evaluated by Western Blot. NO and PGI2 were evaluated by commercial kits. We report here that in CF, TLR4 activation increased B1R mRNA and protein levels, as well as COX-2 and iNOS levels. B1R mRNA levels were also induced by interleukin-1α via its cognate receptor IL-1R1. In LPS-pretreated CF the DAKD treatment induced higher responses with respect to those observed in non LPS-pretreated CF, increasing PGI2 secretion and NO production; and reducing collagen I protein levels in CF. In conclusion, no significant response to DAKD was observed (due to very low expression of B1R in CF) - but pre-activation of TLR4 in CF, conditions that significantly enhanced B1R expression, led to an additional response of DAKD.


Assuntos
Fibroblastos/metabolismo , Miócitos Cardíacos/metabolismo , Receptor B1 da Bradicinina/biossíntese , Receptor 4 Toll-Like/biossíntese , Animais , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Expressão Gênica , Humanos , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor B1 da Bradicinina/agonistas , Receptor B1 da Bradicinina/genética , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/genética
7.
FASEB J ; 32(9): 4941-4954, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29601781

RESUMO

Recent studies suggest that cardiac fibroblast-specific p38α MAPK contributes to the development of cardiac hypertrophy, but the underlying mechanism is unknown. Our study used a novel fibroblast-specific, tamoxifen-inducible p38α knockout (KO) mouse line to characterize the role of fibroblast p38α in modulating cardiac hypertrophy, and we elucidated the mechanism. Myocardial injury was induced in tamoxifen-treated Cre-positive p38α KO mice or control littermates via chronic infusion of the ß-adrenergic receptor agonist isoproterenol. Cardiac function was assessed by pressure-volume conductance catheter analysis and was evaluated for cardiac hypertrophy at tissue, cellular, and molecular levels. Isoproterenol infusion in control mice promoted overt cardiac hypertrophy and dysfunction (reduced ejection fraction, increased end systolic volume, increased cardiac weight index, increased cardiomyocyte area, increased fibrosis, and up-regulation of myocyte fetal genes and hypertrophy-associated microRNAs). Fibroblast-specific p38α KO mice exhibited marked protection against myocardial injury, with isoproterenol-induced alterations in cardiac function, histology, and molecular markers all being attenuated. In vitro mechanistic studies determined that cardiac fibroblasts responded to damaged myocardium by secreting several paracrine factors known to induce cardiomyocyte hypertrophy, including IL-6, whose secretion was dependent upon p38α activity. In conclusion, cardiac fibroblast p38α contributes to cardiomyocyte hypertrophy and cardiac dysfunction, potentially via a mechanism involving paracrine fibroblast-to-myocyte IL-6 signaling.-Bageghni, S. A., Hemmings, K. E., Zava, N., Denton, C. P., Porter, K. E., Ainscough, J. F. X., Drinkhill, M. J., Turner, N. A. Cardiac fibroblast-specific p38α MAP kinase promotes cardiac hypertrophy via a putative paracrine interleukin-6 signaling mechanism.


Assuntos
Fibroblastos/efeitos dos fármacos , Interleucina-6/metabolismo , Isoproterenol/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Animais , Cardiomegalia/tratamento farmacológico , Cardiomegalia/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Knockout , Miocárdio/patologia
8.
J Vasc Res ; 55(1): 35-46, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29232676

RESUMO

Abdominal aortic aneurysm (AAA) is a silent, progressive disease with a high mortality and an increasing prevalence with aging. Smooth muscle cell (SMC) dysfunction contributes to gradual dilatation and eventual rupture of the aorta. Here we studied phenotypic characteristics in SMC cultured from end-stage human AAA (≥5 cm) and cells cultured from a porcine carotid artery (PCA) model of early and end-stage aneurysm. Human AAA-SMC presented a secretory phenotype and expressed elevated levels of the differentiation marker miR-145 (2.2-fold, p < 0.001) and the senescence marker SIRT-1 (1.3-fold, p < 0.05), features not recapitulated in aneurysmal PCA-SMC. Human and end-stage porcine aneurysmal cells were frequently multi-nucleated (3.9-fold, p < 0.001, and 1.8-fold, p < 0.01, respectively, vs. control cells) and displayed an aberrant nuclear morphology. Human AAA-SMC exhibited higher levels of the DNA damage marker γH2AX (3.9-fold, p < 0.01, vs. control SMC). These features did not correlate with patients' chronological age and are therefore potential markers for pathological premature vascular aging. Early-stage PCA-SMC (control and aneurysmal) were indistinguishable from one another across all parameters. The principal limitation of human studies is tissue availability only at the end stage of the disease. Refinement of a porcine bioreactor model would facilitate the study of temporal modulation of SMC behaviour during aneurysm development and potentially identify therapeutic targets to limit AAA progression.


Assuntos
Aneurisma da Aorta Abdominal/patologia , Ruptura Aórtica/patologia , Músculo Liso/patologia , Miócitos de Músculo Liso/patologia , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/complicações , Aneurisma da Aorta Abdominal/metabolismo , Ruptura Aórtica/etiologia , Ruptura Aórtica/metabolismo , Diferenciação Celular , Forma Celular , Células Cultivadas , Senescência Celular , Dano ao DNA , Dilatação Patológica , Progressão da Doença , Histonas/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo , Sirtuína 1/metabolismo , Sus scrofa
9.
Matrix Biol ; 32(7-8): 399-406, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23583823

RESUMO

During cardiac remodeling, cardiac fibroblasts (CF) are influenced by increased levels of interleukin-1α (IL-1α) and transforming growth factor-ß1 (TGFß1). The present study investigated the interaction between these two important cytokines on function of human CF and their differentiation to myofibroblasts (CMF). CF were isolated from human atrial appendage and exposed to IL-1α and/or TGFß1 (both 0.1 ng/ml). mRNA expression levels of selected genes were determined after 6-24h by real-time RT-PCR, while protein levels were analyzed at 24-48 h by ELISA or western blot. Activation of canonical signaling pathways (NFκB, Smad3, p38 MAPK) was determined by western blotting. Differentiation to CMF was examined by collagen gel contraction assays. Exposure of CF to IL-1α alone enhanced levels of IL-6, IL-8, matrix metalloproteinase-3 (MMP3) and collagen III (COL3A1), but reduced the CMF markers α-smooth muscle actin (αSMA) and connective tissue growth factor (CTGF/CCN2). By contrast, TGFß1 alone had minor effects on IL-6, IL-8 and MMP3 levels, but significantly increased levels of the CMF markers αSMA, CTGF, COL1A1 and COL3A1. Co-stimulation with both IL-1α and TGFß1 increased MMP3 expression synergistically. Furthermore, while TGFß1 had no effect on IL-1α-induced IL-6 or IL-8 levels, co-stimulation inhibited the TGFß1-induced increase in αSMA and blocked the gel contraction caused by TGFß1. Combining IL-1α and TGFß1 had no apparent effect on their canonical signaling pathways. In conclusion, IL-1α and TGFß1 act synergistically to stimulate MMP3 expression in CF. Moreover, IL-1α has a dominant inhibitory effect on the phenotypic switch of CF to CMF induced by TGFß1.


Assuntos
Fibroblastos/fisiologia , Regulação da Expressão Gênica/genética , Interleucina-1alfa/metabolismo , Miocárdio/citologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Western Blotting , Colágeno Tipo III/metabolismo , Fibroblastos/metabolismo , Humanos , Interleucina-1alfa/genética , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Miocárdio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta1/genética
10.
Matrix Biol ; 32(3-4): 208-14, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23454256

RESUMO

Cardiac fibroblasts (CF) play a central role in the repair and remodeling of the heart following injury and are important regulators of inflammation and extracellular matrix (ECM) turnover. ECM-regulatory matricellular proteins are synthesized by several myocardial cell types including CF. We investigated the effects of pro-inflammatory cytokines on matricellular protein expression in cultured human CF. cDNA array analysis of matricellular proteins revealed that interleukin-1α (IL-1α, 10ng/ml, 6h) down-regulated connective tissue growth factor (CTGF/CCN2) mRNA by 80% and up-regulated tenascin-C (TNC) mRNA levels by 10-fold in human CF, without affecting expression of thrombospondins 1-3, osteonectin or osteopontin. Western blotting confirmed these changes at the protein level. In contrast, tumor necrosis factor α (TNFα) did not modulate CCN2 expression and had only a modest stimulatory effect on TNC levels. Signaling pathway inhibitor studies suggested an important role for the p38 MAPK pathway in suppressing CCN2 expression in response to IL-1α. In contrast, multiple signaling pathways (p38, JNK, PI3K/Akt and NFκB) contributed to IL-1α-induced TNC expression. In conclusion, IL-1α reduced CCN2 expression and increased TNC expression in human CF. These observations are of potential value for understanding how inflammation and ECM regulation are linked at the level of the CF.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Interleucina-1alfa/fisiologia , Miofibroblastos/metabolismo , Tenascina/metabolismo , Células Cultivadas , Fator de Crescimento do Tecido Conjuntivo/genética , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Miocárdio/patologia , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Tenascina/genética , Fator de Necrose Tumoral alfa/fisiologia
11.
Eur J Hum Genet ; 21(1): 40-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22763377

RESUMO

There is evidence that expression and methylation of the imprinted paternally expressed gene 1/mesoderm-specific transcript homologue (PEG1/MEST) gene may be affected by assisted reproductive technologies (ARTs) and infertility. In this study, we sought to assess the imprinting status of the MEST gene in a large cohort of in vitro-derived human preimplantation embryos, in order to characterise potentially adverse effects of ART and infertility on this locus in early human development. Embryonic genomic DNA from morula or blastocyst stage embryos was screened for a transcribed AflIII polymorphism in MEST and imprinting analysis was then performed in cDNA libraries derived from these embryos. In 10 heterozygous embryos, MEST expression was monoallelic in seven embryos, predominantly monoallelic in two embryos, and biallelic in one embryo. Screening of cDNA derived from 61 additional human preimplantation embryos, for which DNA for genotyping was unavailable, identified eight embryos with expression originating from both alleles (biallelic or predominantly monoallelic). In some embryos, therefore, the onset of imprinted MEST expression occurs during late preimplantation development. Variability in MEST imprinting was observed in both in vitro fertilization and intracytoplasmic sperm injection-derived embryos. Biallelic or predominantly monoallelic MEST expression was not associated with any one cause of infertility. Characterisation of the main MEST isoforms revealed that isoform 2 was detected in early development and was itself variably imprinted between embryos. To our knowledge, this report constitutes the largest expression study to date of genomic imprinting in human preimplantation embryos and reveals that for some imprinted genes, contrasting imprinting states exist between embryos.


Assuntos
Blastocisto , Impressão Genômica , Proteínas/genética , Técnicas de Reprodução Assistida/efeitos adversos , Regiões 3' não Traduzidas , Processamento Alternativo , Blastocisto/fisiologia , Estudos de Coortes , DNA Complementar , Feminino , Fertilização in vitro , Regulação da Expressão Gênica no Desenvolvimento , Heterozigoto , Humanos , Masculino , Mórula , Oócitos/fisiologia , Polimorfismo Genético , Injeções de Esperma Intracitoplásmicas
12.
Biol Reprod ; 86(5): 165, 1-12, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22378762

RESUMO

Amino acid profiling has been used to distinguish between human embryos of differing developmental competence. We sought to determine whether amino acid profiling could be used to distinguish between metaphase II (MII) bovine oocytes with different developmental capabilities in vitro. Amino acid turnover was assayed during the final 6 h of in vitro maturation prior to oocytes undergoing individual fertilization in vitro. Following insemination, zygotes were immobilized in groups of 16 on the base of a Petri dish using Cell-Tak tissue adhesive to enable the developmental progress of each to be tracked to the blastocyst stage. Spent droplets of in vitro maturation medium were analyzed by high performance liquid chromatography, which revealed glutamine, arginine, and asparagine were depleted in the greatest quantities. Incompetent MII oocytes that failed to cleave by 72 h postfertilization depleted significantly more glutamine from (P = 0.0006) and released more alanine (P = 0.0001) into the medium than oocytes that cleaved. When cutoff values were selected for the turnover of alanine, arginine, glutamine, leucine, and tryptophan and modeled to predict fertilization and cleavage potential, oocytes that did not exceed the cutoff values for ≥2 of these key amino acids were more likely to cleave. The sensitivity, specificity, accuracy, and positive predictive value of this model were 60.5%, 76.8%, 63.5%, and 92.0%, respectively. Significant differences (P ≤ 0.015) in the consumption/production of alanine and glutamine were also observed when comparing uncleaved oocytes with those that produced blastocysts. The data show that noninvasive amino acid profiling can be used to measure oocyte developmental competence.


Assuntos
Aminoácidos/metabolismo , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Animais , Blastocisto/metabolismo , Bovinos , Desenvolvimento Embrionário/fisiologia , Feminino , Fertilização in vitro/métodos , Valor Preditivo dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...