Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(692): eadf4086, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37075130

RESUMO

Glutaric aciduria type I (GA-1) is an inborn error of metabolism with a severe neurological phenotype caused by the deficiency of glutaryl-coenzyme A dehydrogenase (GCDH), the last enzyme of lysine catabolism. Current literature suggests that toxic catabolites in the brain are produced locally and do not cross the blood-brain barrier. In a series of experiments using knockout mice of the lysine catabolic pathway and liver cell transplantation, we uncovered that toxic GA-1 catabolites in the brain originated from the liver. Moreover, the characteristic brain and lethal phenotype of the GA-1 mouse model was rescued by two different liver-directed gene therapy approaches: Using an adeno-associated virus, we replaced the defective Gcdh gene or we prevented flux through the lysine degradation pathway by CRISPR deletion of the aminoadipate-semialdehyde synthase (Aass) gene. Our findings question the current pathophysiological understanding of GA-1 and reveal a targeted therapy for this devastating disorder.


Assuntos
Glutaril-CoA Desidrogenase , Lisina , Animais , Camundongos , Glutaril-CoA Desidrogenase/genética , Glutaril-CoA Desidrogenase/metabolismo , Lisina/metabolismo , Camundongos Knockout , Fígado/metabolismo
2.
Curr Protoc Mol Biol ; 130(1): e117, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32150344

RESUMO

Somatic liver knockout (SLiK) is a method developed to rapidly generate a liver-specific knockout of one or several genes. This technique combines the strengths of CRISPR/Cas9 gene editing and hydrodynamic tail-vein injection, a simple in vivo method for transfection of hepatocytes, to harness the powerful selection pressure of tyrosinemic livers to replace host hepatocytes with any desired gene deletion. In this protocol, we will describe sgRNA design and cloning, hydrodynamic tail-vein injection of targeting constructs, and screening and validation methods for efficient in vivo gene editing. © 2020 by John Wiley & Sons, Inc. Support Protocol 1: sgRNA design Support Protocol 2: sgRNA construction: daisy chaining multiple sgRNAs Basic Protocol: Delivery of DNA by hydrodynamic tail-vein injection and liver repopulation of edited hepatocytes Support Protocol 3: Validation of CRISPR/Cas9 cutting in vivo.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Hepatócitos/metabolismo , Fígado/metabolismo , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Camundongos , Camundongos Knockout , RNA Guia de Cinetoplastídeos/genética , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA