Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nature ; 525(7568): 201-5, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26331545

RESUMO

The global extent and distribution of forest trees is central to our understanding of the terrestrial biosphere. We provide the first spatially continuous map of forest tree density at a global scale. This map reveals that the global number of trees is approximately 3.04 trillion, an order of magnitude higher than the previous estimate. Of these trees, approximately 1.39 trillion exist in tropical and subtropical forests, with 0.74 trillion in boreal regions and 0.61 trillion in temperate regions. Biome-level trends in tree density demonstrate the importance of climate and topography in controlling local tree densities at finer scales, as well as the overwhelming effect of humans across most of the world. Based on our projected tree densities, we estimate that over 15 billion trees are cut down each year, and the global number of trees has fallen by approximately 46% since the start of human civilization.


Assuntos
Florestas , Mapeamento Geográfico , Árvores/crescimento & desenvolvimento , Ecologia/estatística & dados numéricos , Ecossistema , Agricultura Florestal/estatística & dados numéricos , Densidade Demográfica , Reprodutibilidade dos Testes
3.
Heredity (Edinb) ; 105(6): 543-53, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20160758

RESUMO

Understanding the natural history of model organisms is important for the effective use of their genomic resources. Arabidopsis lyrata has emerged as a useful plant for studying ecological and evolutionary genetics, based on its extensive natural variation, sequenced genome and close relationship to A. thaliana. We studied genetic diversity across the entire range of European Arabidopsis lyrata ssp. petraea, in order to explore how population history has influenced population structure. We sampled multiple populations from each region, using nuclear and chloroplast genome markers, and combined population genetic and phylogeographic approaches. Within-population diversity is substantial for nuclear allozyme markers (mean P=0.610, A(e)=1.580, H(e)=0.277) and significantly partitioned among populations (F(ST)=0.271). The Northern populations have modestly increased inbreeding (F(IS)=0.163 verses F(IS)=0.093), but retain comparable diversity to central European populations. Bottlenecks are common among central and northern Europe populations, indicating recent demographic history as a dominant factor in structuring the European diversity. Although the genetic structure was detected at all geographic scales, two clear differentiated units covering northern and central European areas (F(CT) =0.155) were identified by Bayesian analysis and supported by regional pairwise F(CT) calculations. A highly similar geographic pattern was observed from the distribution of chloroplast haplotypes, with the dominant northern haplotypes absent from central Europe. We conclude A. l. petraea's cold-tolerance and preference for disturbed habitats enabled glacial survival between the alpine and Nordic glaciers in central Europe and an additional cryptic refugium. While German populations are probable peri-glacial leftovers, Eastern Austrian populations have diversity patterns possibly compatible with longer-term survival.


Assuntos
Arabidopsis/genética , Variação Genética , Arabidopsis/classificação , Cloroplastos/genética , DNA de Plantas/genética , Europa (Continente) , Evolução Molecular , Haplótipos , Dados de Sequência Molecular , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...