Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2400302, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634222

RESUMO

Tin-lead (Sn-Pb) perovskite solar cells (PSCs) have gained interest as candidates for the bottom cell of all-perovskite tandem solar cells due to their broad absorption of the solar spectrum. A notable challenge arises from the prevalent use of the hole transport layer, PEDOT:PSS, known for its inherently high doping level. This high doping level can lead to interfacial recombination, imposing a significant limitation on efficiency. Herein, NaOH is used to dedope PEDOT:PSS, with the aim of enhancing the efficiency of Sn-Pb PSCs. Secondary ion mass spectrometer profiles indicate that sodium ions diffuse into the perovskite layer, improving its crystallinity and enlarging its grains. Comprehensive evaluations, including photoluminescence and nanosecond transient absorption spectroscopy, confirm that dedoping significantly reduces interfacial recombination, resulting in an open-circuit voltage as high as 0.90 V. Additionally, dedoping PEDOT:PSS leads to increased shunt resistance and high fill factor up to 0.81. As a result of these improvements, the power conversion efficiency is enhanced from 19.7% to 22.6%. Utilizing NaOH to dedope PEDOT:PSS also transitions its nature from acidic to basic, enhancing stability and exhibiting less than a 7% power conversion efficiency loss after 1176 h of storage in N2 atmosphere.

2.
Adv Mater ; 35(21): e2300166, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36912419

RESUMO

Silver grid electrodes on glass and flexible plastic substrates with performance that exceeds that of commercial indium-tin oxide (ITO) coated glass are reported and show their suitability as a drop-in replacement for ITO glass in solution-processed organic photovoltaics (OPVs). When supported on flexible plastic substrates these electrodes are stable toward repeated bending through a small radius of curvature over tens of thousands of cycles. The grid electrodes are fabricated by the unconventional approach of condensation coefficient modulation using a perfluorinated polymer shown to be far superior to the other compounds used for this purpose to date. The very narrow line width and small grid pitch that can be achieved also open the door to the possibility of using grid electrodes in OPVs without a conducting poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate) (PEDOT: PSS) layer to span the gaps between grid lines.

3.
ACS Energy Lett ; 7(2): 560-568, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35434365

RESUMO

PEDOT: PSS is widely used as a hole transport layer (HTL) in perovskite solar cells (PSCs) due to its facile processability, industrial scalability, and commercialization potential. However, PSCs utilizing PEDOT:PSS suffer from strong recombination losses compared to other organic HTLs. This results in lower open-circuit voltage (V OC) and power conversion efficiency (PCE). Most studies focus on doping PEDOT:PSS to improve charge extraction, but it has been suggested that a high doping level can cause strong recombination losses. Herein, we systematically dedope PEDOT:PSS with aqueous NaOH, raising its Fermi level by up to 500 meV, and optimize its layer thickness in p-i-n devices. A significant reduction of recombination losses at the dedoped PEDOT:PSS/perovskite interface is evidenced by a longer photoluminescence lifetime and higher magnitude of surface photovoltage, leading to an increased device V OC, fill factor, and PCE. These results provide insights into the relationship between doping level of HTLs and interfacial charge carrier recombination losses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...