Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Anat ; 244(3): 497-513, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37957890

RESUMO

The separation of the outflow tract of the developing heart into the systemic and pulmonary arterial channels remains controversial and poorly understood. The definitive outflow tracts have three components. The developing outflow tract, in contrast, has usually been described in two parts. When the tract has exclusively myocardial walls, such bipartite description is justified, with an obvious dogleg bend separating proximal and distal components. With the addition of non-myocardial walls distally, it becomes possible to recognise three parts. The middle part, which initially still has myocardial walls, contains within its lumen a pair of intercalated valvar swellings. The swellings interdigitate with the distal ends of major outflow cushions, formed by the remodelling of cardiac jelly, to form the primordiums of the arterial roots. The proximal parts of the major cushions, occupying the proximal part of the outflow tract, which also has myocardial walls, themselves fuse and muscularise. The myocardial shelf thus formed remodels to become the free-standing subpulmonary infundibulum. Details of all these processes are currently lacking. In this account, we describe the anatomical changes seen during the overall remodelling. Our interpretations are based on the interrogation of serially sectioned histological and high-resolution episcopic microscopy datasets prepared from developing human and mouse embryos, with some of the datasets processed and reconstructed to reveal the specific nature of the tissues contributing to the separation of the outflow channels. Our findings confirm that the tripartite postnatal arrangement can be correlated with the changes occurring during development.


Assuntos
Estruturas Embrionárias , Matriz Extracelular , Cardiopatias Congênitas , Coração , Camundongos , Animais , Humanos , Ventrículos do Coração , Artéria Pulmonar
3.
Hum Mol Genet ; 33(2): 150-169, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-37815931

RESUMO

Developmental studies have shown that the evolutionarily conserved Wnt Planar Cell Polarity (PCP) pathway is essential for the development of a diverse range of tissues and organs including the brain, spinal cord, heart and sensory organs, as well as establishment of the left-right body axis. Germline mutations in the highly conserved PCP gene VANGL2 in humans have only been associated with central nervous system malformations, and functional testing to understand variant impact has not been performed. Here we report three new families with missense variants in VANGL2 associated with heterotaxy and congenital heart disease p.(Arg169His), non-syndromic hearing loss p.(Glu465Ala) and congenital heart disease with brain defects p.(Arg135Trp). To test the in vivo impact of these and previously described variants, we have established clinically-relevant assays using mRNA rescue of the vangl2 mutant zebrafish. We show that all variants disrupt Vangl2 function, although to different extents and depending on the developmental process. We also begin to identify that different VANGL2 missense variants may be haploinsufficient and discuss evidence in support of pathogenicity. Together, this study demonstrates that zebrafish present a suitable pipeline to investigate variants of unknown significance and suggests new avenues for investigation of the different developmental contexts of VANGL2 function that are clinically meaningful.


Assuntos
Cardiopatias Congênitas , Peixe-Zebra , Animais , Humanos , Polaridade Celular/genética , Células Germinativas/metabolismo , Mutação em Linhagem Germinativa/genética , Cardiopatias Congênitas/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
4.
Dis Model Mech ; 17(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38111957

RESUMO

eNOS (NOS3) is the enzyme that generates nitric oxide, a signalling molecule and regulator of vascular tone. Loss of eNOS function is associated with increased susceptibility to atherosclerosis, hypertension, thrombosis and stroke. Aortopathy and cardiac hypertrophy have also been found in eNOS null mice, but their aetiology is unclear. We evaluated eNOS nulls before and around birth for cardiac defects, revealing severe abnormalities in the ventricular myocardium and pharyngeal arch arteries. Moreover, in the aortic arch, there were fewer baroreceptors, which sense changes in blood pressure. Adult eNOS null survivors showed evidence of cardiac hypertrophy, aortopathy and cartilaginous metaplasia in the periductal region of the aortic arch. Notch1 and neuregulin were dysregulated in the forming pharyngeal arch arteries and ventricles, suggesting that these pathways may be relevant to the defects observed. Dysregulation of eNOS leads to embryonic and perinatal death, suggesting mutations in eNOS are candidates for causing congenital heart defects in humans. Surviving eNOS mutants have a deficiency of baroreceptors that likely contributes to high blood pressure and may have relevance to human patients who suffer from hypertension associated with aortic arch abnormalities.


Assuntos
Embrião de Mamíferos , Cardiopatias Congênitas , Hipertensão , Camundongos , Animais , Humanos , Coração , Óxido Nítrico Sintase Tipo III/metabolismo , Aorta/metabolismo , Camundongos Knockout , Cardiomegalia
5.
PLoS Genet ; 19(11): e1010777, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38011284

RESUMO

Abnormalities of the arterial valves, including bicuspid aortic valve (BAV) are amongst the most common congenital defects and are a significant cause of morbidity as well as predisposition to disease in later life. Despite this, and compounded by their small size and relative inaccessibility, there is still much to understand about how the arterial valves form and remodel during embryogenesis, both at the morphological and genetic level. Here we set out to address this in human embryos, using Spatial Transcriptomics (ST). We show that ST can be used to investigate the transcriptome of the developing arterial valves, circumventing the problems of accurately dissecting out these tiny structures from the developing embryo. We show that the transcriptome of CS16 and CS19 arterial valves overlap considerably, despite being several days apart in terms of human gestation, and that expression data confirm that the great majority of the most differentially expressed genes are valve-specific. Moreover, we show that the transcriptome of the human arterial valves overlaps with that of mouse atrioventricular valves from a range of gestations, validating our dataset but also highlighting novel genes, including four that are not found in the mouse genome and have not previously been linked to valve development. Importantly, our data suggests that valve transcriptomes are under-represented when using commonly used databases to filter for genes important in cardiac development; this means that causative variants in valve-related genes may be excluded during filtering for genomic data analyses for, for example, BAV. Finally, we highlight "novel" pathways that likely play important roles in arterial valve development, showing that mouse knockouts of RBP1 have arterial valve defects. Thus, this study has confirmed the utility of ST for studies of the developing heart valves and broadens our knowledge of the genes and signalling pathways important in human valve development.


Assuntos
Doença da Válvula Aórtica Bicúspide , Doenças das Valvas Cardíacas , Humanos , Camundongos , Animais , Doenças das Valvas Cardíacas/genética , Valva Aórtica/anormalidades , Doença da Válvula Aórtica Bicúspide/metabolismo , Perfilação da Expressão Gênica , Transcriptoma/genética
6.
Science ; 381(6659): eadd7564, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37590359

RESUMO

The extraembryonic yolk sac (YS) ensures delivery of nutritional support and oxygen to the developing embryo but remains ill-defined in humans. We therefore assembled a comprehensive multiomic reference of the human YS from 3 to 8 postconception weeks by integrating single-cell protein and gene expression data. Beyond its recognized role as a site of hematopoiesis, we highlight roles in metabolism, coagulation, vascular development, and hematopoietic regulation. We reconstructed the emergence and decline of YS hematopoietic stem and progenitor cells from hemogenic endothelium and revealed a YS-specific accelerated route to macrophage production that seeds developing organs. The multiorgan functions of the YS are superseded as intraembryonic organs develop, effecting a multifaceted relay of vital functions as pregnancy proceeds.


Assuntos
Desenvolvimento Embrionário , Saco Vitelino , Feminino , Humanos , Gravidez , Coagulação Sanguínea/genética , Macrófagos , Saco Vitelino/citologia , Saco Vitelino/metabolismo , Desenvolvimento Embrionário/genética , Atlas como Assunto , Expressão Gênica , Perfilação da Expressão Gênica , Hematopoese/genética , Fígado/embriologia
7.
J Cardiovasc Dev Dis ; 9(8)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36005443

RESUMO

Hypoplastic left heart syndrome (HLHS) is a collective term applied to severe congenital cardiac malformations, characterised by a combination of abnormalities mainly affecting the left ventricle, associated valves, and ascending aorta. Although in clinical practice HLHS is usually sub-categorised based on the patency of the mitral and aortic (left-sided) valves, it is also possible to comprehensively categorise HLHS into defined sub-groups based on the left ventricular morphology. Here, we discuss the published human-based studies of the ventricular myocardium in HLHS, evaluating whether the available evidence is in keeping with this ventricular morphology concept. Specifically, we highlight results from histological studies, indicating that the appearance of cardiomyocytes can be different based on the sub-group of HLHS. In addition, we discuss the histological appearances of endocardial fibroelastosis (EFE), which is a common feature of one specific sub-group of HLHS. Lastly, we suggest investigations that should ideally be undertaken using HLHS myocardial tissues at early stages of HLHS development to identify biological pathways and aid the understanding of HLHS aetiology.

8.
Development ; 149(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35352808

RESUMO

The establishment of the left-right axis is crucial for the placement, morphogenesis and function of internal organs. Left-right specification is proposed to be dependent on cilia-driven fluid flow in the embryonic node. Planar cell polarity (PCP) signalling is crucial for patterning of nodal cilia, yet downstream effectors driving this process remain elusive. We have examined the role of the JNK gene family, a proposed downstream component of PCP signalling, in the development and function of the zebrafish node. We show jnk1 and jnk2 specify length of nodal cilia, generate flow in the node and restrict southpaw to the left lateral plate mesoderm. Moreover, loss of asymmetric southpaw expression does not result in disturbances to asymmetric organ placement, supporting a model in which nodal flow may be dispensable for organ laterality. Later, jnk3 is required to restrict pitx2c expression to the left side and permit correct endodermal organ placement. This work uncovers multiple roles for the JNK gene family acting at different points during left-right axis establishment. It highlights extensive redundancy and indicates JNK activity is distinct from the PCP signalling pathway.


Assuntos
Padronização Corporal , Peixe-Zebra , Animais , Padronização Corporal/genética , Cílios/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
10.
Dis Model Mech ; 14(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34296752

RESUMO

Exercise may ameliorate the eventual heart failure inherent in human aging. In this study, we use zebrafish to understand how aging and exercise affect cardiomyocyte turnover and myocardial remodelling. We show that cardiomyocyte proliferation remains constant throughout life but that onset of fibrosis is associated with a late increase in apoptosis. These findings correlate with decreases in voluntary swimming activity, critical swimming speed (Ucrit), and increases in biomarkers of cardiac insufficiency. The ability to respond to severe physiological stress is also impaired with age. Although young adult fish respond with robust cardiomyocyte proliferation in response to enforced swimming, this is dramatically impaired in older fish and served by a smaller proliferation-competent cardiomyocyte population. Finally, we show that these aging responses can be improved through increased activity throughout adulthood. However, despite improvement in Ucrit and the proliferative response to stress, the size of the proliferating cardiomyocyte population remained unchanged. The zebrafish heart models human aging and reveals the important trade-off between preserving cardiovascular fitness through exercise at the expense of accelerated fibrotic change.


Assuntos
Miócitos Cardíacos , Peixe-Zebra , Envelhecimento/fisiologia , Animais , Apoptose , Proliferação de Células , Coração/fisiologia , Miócitos Cardíacos/metabolismo , Peixe-Zebra/metabolismo
11.
J Cardiovasc Dev Dis ; 8(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477801

RESUMO

Robert (Bob) Henry Anderson was born in Wellington, Shropshire, UK, in 1942 and he completed his medical training in Manchester (UK) in 1966 [...].

12.
Front Cardiovasc Med ; 8: 802930, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155611

RESUMO

Abnormalities in the arterial valves are some of the commonest congenital malformations, with bicuspid aortic valve (BAV) occurring in as many as 2% of the population. Despite this, most of what we understand about the development of the arterial (semilunar; aortic and pulmonary) valves is extrapolated from investigations of the atrioventricular valves in animal models, with surprisingly little specifically known about how the arterial valves develop in mouse, and even less in human. In this review, we summarise what is known about the development of the human arterial valve leaflets, comparing this to the mouse where appropriate.

14.
J Cardiovasc Dev Dis ; 7(4)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987700

RESUMO

Although in many ways the arterial and atrioventricular valves are similar, both being derived for the most part from endocardial cushions, we now know that the arterial valves and their surrounding structures are uniquely dependent on progenitors from both the second heart field (SHF) and neural crest cells (NCC). Here, we will review aspects of arterial valve development, highlighting how our appreciation of NCC and the discovery of the SHF have altered our developmental models. We will highlight areas of research that have been particularly instructive for understanding how the leaflets form and remodel, as well as those with limited or conflicting results. With this background, we will explore how this developmental knowledge can help us to understand human valve malformations, particularly those of the bicuspid aortic valve (BAV). Controversies and the current state of valve genomics will be indicated.

15.
J Cardiovasc Dev Dis ; 7(3)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717817

RESUMO

Congenital cardiovascular malformation is a common birth defect incorporating abnormalities of the outflow tract and aortic arch arteries, and mice deficient in the transcription factor AP-2α (Tcfap2a) present with complex defects affecting these structures. AP-2α is expressed in the pharyngeal surface ectoderm and neural crest at mid-embryogenesis in the mouse, but the precise tissue compartment in which AP-2α is required for cardiovascular development has not been identified. In this study we describe the fully penetrant AP-2α deficient cardiovascular phenotype on a C57Bl/6J genetic background and show that this is associated with increased apoptosis in the pharyngeal ectoderm. Neural crest cell migration into the pharyngeal arches was not affected. Cre-expressing transgenic mice were used in conjunction with an AP-2α conditional allele to examine the effect of deleting AP-2α from the pharyngeal surface ectoderm and the neural crest, either individually or in combination, as well as the second heart field. This, surprisingly, was unable to fully recapitulate the global AP-2α deficient cardiovascular phenotype. The outflow tract and arch artery phenotype was, however, recapitulated through early embryonic Cre-mediated recombination. These findings indicate that AP-2α has a complex influence on cardiovascular development either being required very early in embryogenesis and/or having a redundant function in many tissue layers.

16.
Cell Rep ; 31(10): 107743, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32521268

RESUMO

The organization of spatial information, including pattern completion and pattern separation processes, relies on the hippocampal circuits, yet the molecular and cellular mechanisms underlying these two processes are elusive. Here, we find that loss of Vangl2, a core PCP gene, results in opposite effects on pattern completion and pattern separation processes. Mechanistically, we show that Vangl2 loss maintains young postmitotic granule cells in an immature state, providing increased cellular input for pattern separation. The genetic ablation of Vangl2 disrupts granule cell morpho-functional maturation and further prevents CaMKII and GluA1 phosphorylation, disrupting the stabilization of AMPA receptors. As a functional consequence, LTP at lateral perforant path-GC synapses is impaired, leading to defects in pattern completion behavior. In conclusion, we show that Vangl2 exerts a bimodal regulation on young and mature GCs, and its disruption leads to an imbalance in hippocampus-dependent pattern completion and separation processes.


Assuntos
Giro Denteado/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Polaridade Celular/fisiologia , Giro Denteado/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Fosforilação , Receptores de AMPA/metabolismo
17.
J Anat ; 237(3): 587-600, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32426881

RESUMO

DNA from archived organs is presumed unsuitable for genomic studies because of excessive formalin-fixation. As next generation sequencing (NGS) requires short DNA fragments, and Uracil-N-glycosylase (UNG) can be used to overcome deamination, there has been renewed interest in the possibility of genomic studies using these collections. We describe a novel method of DNA extraction capable of providing PCR amplicons of at least 400 bp length from such excessively formalin-fixed human tissues. When compared with a leading commercial formalin-fixed DNA extraction kit, our method produced greater yields of DNA and reduced sequence variations. Analysis of PCR products using bacterial sub-cloning and Sanger sequencing from UNG-treated DNA unexpectedly revealed increased sequence variations, compared with untreated samples. Finally, whole exome NGS was performed on a myocardial sample fixed in formalin for 2 years and compared with lymphocyte-derived DNA (as a gold standard) from the same patient. Despite the reduction in the number and quality of reads in the formalin-fixed DNA, we were able to show that bioinformatic processing by joint calling and variant quality score recalibration (VQSR) increased the sensitivity four-fold to 56% and doubled specificity to 68% when compared with a standard hard-filtering approach. Thus, high-quality DNA can be extracted from excessively formalin-fixed tissues and bioinformatic processing can optimise sensitivity and specificity of results. Sequencing of several sub-cloned amplicons is an important methodological step in assessing DNA quality.


Assuntos
DNA/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fixação de Tecidos , Formaldeído , Humanos
18.
PLoS Genet ; 16(5): e1008782, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32421721

RESUMO

The planar cell polarity pathway is required for heart development and whilst the functions of most pathway members are known, the roles of the jnk genes in cardiac morphogenesis remain unknown as mouse mutants exhibit functional redundancy, with early embryonic lethality of compound mutants. In this study zebrafish were used to overcome early embryonic lethality in mouse models and establish the requirement for Jnk in heart development. Whole mount in-situ hybridisation and RT-PCR demonstrated that evolutionarily conserved alternative spliced jnk1a and jnk1b transcripts were expressed in the early developing heart. Maternal zygotic null mutant zebrafish lines for jnk1a and jnk1b, generated using CRISPR-Cas9, revealed a requirement for jnk1a in formation of the proximal, first heart field (FHF)-derived portion of the cardiac ventricular chamber. Rescue of the jnk1a mutant cardiac phenotype was only possible by injection of the jnk1a EX7 Lg alternatively spliced transcript. Analysis of mutants indicated that there was a reduction in the size of the hand2 expression field in jnk1a mutants which led to a specific reduction in FHF ventricular cardiomyocytes within the anterior lateral plate mesoderm. Moreover, the jnk1a mutant ventricular defect could be rescued by injection of hand2 mRNA. This study reveals a novel and critical requirement for Jnk1 in heart development and highlights the importance of alternative splicing in vertebrate cardiac morphogenesis. Genetic pathways functioning through jnk1 may be important in human heart malformations with left ventricular hypoplasia.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ventrículos do Coração/citologia , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Processamento Alternativo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Contagem de Células , Células Cultivadas , Éxons , Regulação da Expressão Gênica no Desenvolvimento , Ventrículos do Coração/embriologia , Ventrículos do Coração/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
19.
J Cardiovasc Dev Dis ; 7(2)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466118

RESUMO

The correct formation of the aortic arch arteries depends on a coordinated and regulated gene expression profile within the tissues of the pharyngeal arches. Perturbation of the gene regulatory networks in these tissues results in congenital heart defects affecting the arch arteries and the outflow tract of the heart. Aberrant development of these structures leads to interruption of the aortic arch and double outlet right ventricle, abnormalities that are a leading cause of morbidity in 22q11 Deletion Syndrome (DS) patients. We have recently shown that Pax9 functionally interacts with the 22q11DS gene Tbx1 in the pharyngeal endoderm for 4th pharyngeal arch artery morphogenesis, with double heterozygous mice dying at birth with interrupted aortic arch. Mice lacking Pax9 die perinatally with complex cardiovascular defects and in this study we sought to validate further potential genetic interacting partners of Pax9, focussing on Gbx2 which is down-regulated in the pharyngeal endoderm of Pax9-null embryos. Here, we describe the Gbx2-null cardiovascular phenotype and demonstrate a genetic interaction between Gbx2 and Pax9 in the pharyngeal endoderm during cardiovascular development.

20.
Glia ; 68(9): 1840-1858, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32125730

RESUMO

During axonal ensheathment, noncompact myelin channels formed at lateral edges of the myelinating process become arranged into tight paranodal spirals that resemble loops when cut in cross section. These adhere to the axon, concentrating voltage-dependent sodium channels at nodes of Ranvier and patterning the surrounding axon into distinct molecular domains. The signals responsible for forming and maintaining the complex structure of paranodal myelin are poorly understood. Here, we test the hypothesis that the planar cell polarity determinant Vangl2 organizes paranodal myelin. We show that Vangl2 is concentrated at paranodes and that, following conditional knockout of Vangl2 in oligodendrocytes, the paranodal spiral loosens, accompanied by disruption to the microtubule cytoskeleton and mislocalization of autotypic adhesion molecules between loops within the spiral. Adhesion of the spiral to the axon is unaffected. This results in disruptions to axonal patterning at nodes of Ranvier, paranodal axon diameter and conduction velocity. When taken together with our previous work showing that loss of the apico-basal polarity protein Scribble has the opposite phenotype-loss of axonal adhesion but no effect on loop-loop autotypic adhesion-our results identify a novel mechanism by which polarity proteins control the shape of nodes of Ranvier and regulate conduction in the CNS.


Assuntos
Bainha de Mielina , Nós Neurofibrosos , Axônios , Polaridade Celular , Oligodendroglia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...