Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Elife ; 122023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37338965

RESUMO

The cellular mechanisms mediating norepinephrine (NE) functions in brain to result in behaviors are unknown. We identified the L-type Ca2+ channel (LTCC) CaV1.2 as a principal target for Gq-coupled α1-adrenergic receptors (ARs). α1AR signaling increased LTCC activity in hippocampal neurons. This regulation required protein kinase C (PKC)-mediated activation of the tyrosine kinases Pyk2 and, downstream, Src. Pyk2 and Src were associated with CaV1.2. In model neuroendocrine PC12 cells, stimulation of PKC induced tyrosine phosphorylation of CaV1.2, a modification abrogated by inhibition of Pyk2 and Src. Upregulation of LTCC activity by α1AR and formation of a signaling complex with PKC, Pyk2, and Src suggests that CaV1.2 is a central conduit for signaling by NE. Indeed, a form of hippocampal long-term potentiation (LTP) in young mice requires both the LTCC and α1AR stimulation. Inhibition of Pyk2 and Src blocked this LTP, indicating that enhancement of CaV1.2 activity via α1AR-Pyk2-Src signaling regulates synaptic strength.


Assuntos
Quinase 2 de Adesão Focal , Potenciação de Longa Duração , Ratos , Camundongos , Animais , Quinase 2 de Adesão Focal/metabolismo , Roedores , Fosforilação , Tirosina/metabolismo , Receptores Adrenérgicos/metabolismo , Quinases da Família src/metabolismo
2.
EMBO J ; 39(5): e102622, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31985069

RESUMO

The L-type Ca2+ channel CaV 1.2 governs gene expression, cardiac contraction, and neuronal activity. Binding of α-actinin to the IQ motif of CaV 1.2 supports its surface localization and postsynaptic targeting in neurons. We report a bi-functional mechanism that restricts CaV 1.2 activity to its target sites. We solved separate NMR structures of the IQ motif (residues 1,646-1,664) bound to α-actinin-1 and to apo-calmodulin (apoCaM). The CaV 1.2 K1647A and Y1649A mutations, which impair α-actinin-1 but not apoCaM binding, but not the F1658A and K1662E mutations, which impair apoCaM but not α-actinin-1 binding, decreased single-channel open probability, gating charge movement, and its coupling to channel opening. Thus, α-actinin recruits CaV 1.2 to defined surface regions and simultaneously boosts its open probability so that CaV 1.2 is mostly active when appropriately localized.


Assuntos
Actinina/metabolismo , Canais de Cálcio Tipo L/metabolismo , Calmodulina/metabolismo , Actinina/genética , Substituição de Aminoácidos , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Calmodulina/genética , Humanos , Mutação , Neurônios/metabolismo , Ligação Proteica
4.
Neuron ; 97(5): 1094-1109.e9, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29429936

RESUMO

Despite the central role PSD-95 plays in anchoring postsynaptic AMPARs, how PSD-95 itself is tethered to postsynaptic sites is not well understood. Here we show that the F-actin binding protein α-actinin binds to the very N terminus of PSD-95. Knockdown (KD) of α-actinin phenocopies KD of PSD-95. Mutating lysine at position 10 or lysine at position 11 of PSD-95 to glutamate, or glutamate at position 53 or glutamate and aspartate at positions 213 and 217 of α-actinin, respectively, to lysine impairs, in parallel, PSD-95 binding to α-actinin and postsynaptic localization of PSD-95 and AMPARs. These experiments identify α-actinin as a critical PSD-95 anchor tethering the AMPAR-PSD-95 complex to postsynaptic sites.


Assuntos
Actinina/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/metabolismo , Actinina/química , Actinina/genética , Sequência de Aminoácidos , Animais , Células Cultivadas , Proteína 4 Homóloga a Disks-Large/química , Proteína 4 Homóloga a Disks-Large/genética , Feminino , Células HEK293 , Humanos , Masculino , Estrutura Secundária de Proteína , Ratos
5.
Biochemistry ; 56(28): 3669-3681, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28613835

RESUMO

The voltage-gated L-type Ca2+ channel CaV1.2 is crucial for initiating heartbeat and control of a number of neuronal functions such as neuronal excitability and long-term potentiation. Mutations of CaV1.2 subunits result in serious health problems, including arrhythmia, autism spectrum disorders, immunodeficiency, and hypoglycemia. Thus, precise control of CaV1.2 surface expression and localization is essential. We previously reported that α-actinin associates and colocalizes with neuronal CaV1.2 channels and that shRNA-mediated depletion of α-actinin significantly reduces localization of endogenous CaV1.2 in dendritic spines in hippocampal neurons. Here we investigated the hypothesis that direct binding of α-actinin to CaV1.2 supports its surface expression. Using two-hybrid screens and pull-down assays, we identified three point mutations (K1647A, Y1649A, and I1654A) in the central, pore-forming α11.2 subunit of CaV1.2 that individually impaired α-actinin binding. Surface biotinylation and flow cytometry assays revealed that CaV1.2 channels composed of the corresponding α-actinin-binding-deficient mutants result in a 35-40% reduction in surface expression compared to that of wild-type channels. Moreover, the mutant CaV1.2 channels expressed in HEK293 cells exhibit a 60-75% decrease in current density. The larger decrease in current density as compared to surface expression imparted by these α11.2 subunit mutations hints at the possibility that α-actinin not only stabilizes surface localization of CaV1.2 but also augments its ion conducting activity.


Assuntos
Actinina/metabolismo , Canais de Cálcio Tipo L/metabolismo , Animais , Sítios de Ligação , Canais de Cálcio Tipo L/análise , Células HEK293 , Humanos , Ligação Proteica , Subunidades Proteicas/análise , Subunidades Proteicas/metabolismo , Transporte Proteico , Coelhos
6.
F1000Res ; 6: 1166, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28781760

RESUMO

Background: The L-type Ca2+ channel Cav1.2 is a prominent regulator of neuronal excitability, synaptic plasticity, and gene expression. The central element of Cav1.2 is the pore-forming α 11.2 subunit. It exists in two major size forms, whose molecular masses have proven difficult to precisely determine. Recent work suggests that α 11.2 is proteolytically cleaved between the second and third of its four pore-forming domains (Michailidis et al,. 2014). Methods: To better determine the apparent molecular masses (M R)of the α 11.2 size forms, extensive systematic immunoblotting of brain tissue as well as full length and C-terminally truncated α 11.2 expressed in HEK293 cells was conducted using six different region-specific antibodies against α 11.2. Results: The full length form of α 11.2 migrated, as expected, with an apparent M R of ~250 kDa. A shorter form of comparable prevalence with an apparent M R of ~210 kDa could only be detected in immunoblots probed with antibodies recognizing α 11.2 at an epitope 400 or more residues upstream of the C-terminus. Conclusions: The main two size forms of α 11.2 are the full length form and a shorter form, which lacks ~350 distal C-terminal residues. Midchannel cleavage as suggested by Michailidis et al. (2014) is at best minimal in brain tissue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA