Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 388(2): 655-669, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38129125

RESUMO

Inflammatory pain is caused by tissue hypersensitization and is a component of rheumatic diseases, frequently causing chronic pain. Current guidelines use a multimodal approach to pain and sociocultural changes have renewed interest in cannabinoid use, particularly cannabidiol (CBD), for pain. The tricyclic antidepressant amitriptyline (AT) is approved for use in pain-related syndromes, alone and within a multimodal approach. Therefore, we investigated sex- and dose-dependent effects of CBD and AT antinociception in the 2.5% formalin inflammatory pain model. Male and female C57BL/6J mice were pretreated with either vehicle, CBD (0.3-100 mg/kg), or AT (0.1-30 mg/kg) prior to formalin testing. In the acute phase, CBD induced antinociception after administration of 30-100 mg/kg in males and 100 mg/kg in females and in the inflammatory phase at doses of 2.5-100 mg/kg in males and 10-100 mg/kg in females. In the acute phase, AT induced antinociception at 10 mg/kg for all mice, and at 0.3 mg/kg in males and 3 mg/kg in female mice in the inflammatory phase. Combining the calculated median effective doses of CBD and AT produced additive effects for all mice in the acute phase and for males only in the inflammatory phase. Use of selective serotonin 1A receptor antagonist N-[2-[4-(2-methoxyphenyl)-1 piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY-100635) maleate (0.1 mg/kg) before co-administration of CBD and AT reversed antinociception in the acute and partially reversed antinociception in the inflammatory phase. Administration of AT was found to enhance cannabinoid receptor type 1mRNA expression only in female mice. These results suggest a role for serotonin and sex in mediating cannabidiol and amitriptyline-induced antinociception in inflammatory pain. SIGNIFICANCE STATEMENT: Inflammatory pain is an important component of both acute and chronic pain. We have found that cannabidiol (CBD) and amitriptyline (AT) show dose-dependent, and that AT additionally shows sex-dependent, antinociceptive effects in an inflammatory pain model. Additionally, the combination of CBD and AT was found to have enhanced antinociceptive effects that is partially reliant of serotonin 1A receptors and supports the use of CBD within a multimodal approach to pain.


Assuntos
Canabidiol , Dor Crônica , Camundongos , Masculino , Feminino , Animais , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Serotonina/metabolismo , Amitriptilina/farmacologia , Amitriptilina/uso terapêutico , Dor Crônica/tratamento farmacológico , Receptor 5-HT1A de Serotonina , Camundongos Endogâmicos C57BL , Antagonistas da Serotonina/farmacologia , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Formaldeído
2.
Pharmacol Biochem Behav ; 231: 173620, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37625522

RESUMO

Early life adversity in the form of poor postnatal care is a major developmental stressor impacting behavior later in life. Previous studies have shown the impact of early life stress on neurobehavioral abnormalities. Specifically, research has demonstrated how limited bedding and nesting (LBN) materials can cause behavioral deficits in adulthood. There is, however, a limited understanding of how LBN influences sex-specific neurobehavioral adaptation in adolescence, a developmental stage susceptible to psychiatric diseases including substance use disorder. LBN and stress-naive c57BL/6 adolescent male and female mouse offspring were tested for a battery of behaviors including open field, novel object recognition, elevated plus maze, social preference, and morphine-induced conditioned place preference. There was a significant sex-specific deficit in social preference in male mice exposed to LBN compared to stress-naïve counterparts and both LBN males and females had a higher preference towards the drug-paired chamber in the morphine-induced conditioned place preference test. These behavioral deficits were concomitant with sex-specific increases in the transcription factor, Klf9 in the deep cerebellar nuclei (DCN) of males. Further, mRNA levels of the circadian gene Bmal1, which is known to be transcriptionally regulated by Klf9, were decreased in the DCN. Since Bmal1 has recently been implicated in extracellular matrix modulation, we examined perineuronal nets (PNN) and observed depleted PNN in the DCN of males but not female LBN mice. Overall, we provide a novel understanding of how postpartum adversity impinges on the cerebellar extracellular matrix homeostasis, likely, through disruption of the circadian axis by Klf9 that might underlie sex-specific behavioral adaptations in adolescence.


Assuntos
Fatores de Transcrição ARNTL , Cerebelo , Humanos , Camundongos , Animais , Masculino , Feminino , Morfina/farmacologia , Período Pós-Parto , Recompensa
3.
Psychopharmacology (Berl) ; 240(9): 1987-2003, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37516707

RESUMO

Cannabinoids are increasingly used to alleviate pain; however, tolerance to their antinociceptive effects, including those of delta-9-tetrahydrocannabinol (Δ9-THC), may limit their therapeutic utility. With more women than men using medical cannabis for pain relief, it is crucial to understand how sex influences cannabinoid-mediated antinociception and tolerance. Though studies in rats consistently find females are more sensitive to the acute antinociceptive effects of cannabinoids, our work with mice consistently finds the converse. The present study examined whether our observed sex differences in Δ9-THC-induced antinociception and tolerance are consistent across multiple mouse strains or are strain-dependent. Male and female C57BL/6J (B6), DBA/2, AKR, and CBA/J mice were assessed for differences in acute Δ9-THC-induced antinociception and hypothermia prior to and following seven days of once-daily Δ9-THC administration. Consistent with our previous findings, male B6 mice were more sensitive to the acute antinociceptive effects of Δ9-THC than female littermates, an effect which dissipated with age. B6 males had decreased cannabinoid expression in the PAG compared to females. While DBA and CBA female mice showed increased Δ9-THC-antinociception compared to male littermates at 30 and 10 mg/kg Δ9-THC, respectively, these differences were less pronounced at higher doses, revealing that dose of Δ9-THC may also be important. Overall, CBA mice were more sensitive to Δ9-THC-induced antinociception while AKR mice were less responsive. These studies highlight the therapeutic potential of Δ9-THC in pain management and underscore the importance of considering not only Δ9-THC dose as a function of sex, but potentially genetic differences when evaluating their clinical utility.


Assuntos
Canabinoides , Dronabinol , Camundongos , Ratos , Feminino , Masculino , Animais , Dronabinol/farmacologia , Caracteres Sexuais , Camundongos Endogâmicos CBA , Camundongos Endogâmicos DBA , Camundongos Endogâmicos C57BL , Canabinoides/farmacologia , Analgésicos/farmacologia , Relação Dose-Resposta a Droga
4.
Biochem Pharmacol ; 214: 115665, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37348821

RESUMO

Cannabis has been used recreationally and medically for centuries, yet research into understanding the mechanisms of its therapeutic effects has only recently garnered more attention. There is evidence to support the use of cannabinoids for the treatment of chronic pain, muscle spasticity, nausea and vomiting due to chemotherapy, improving weight gain in HIV-related cachexia, emesis, sleep disorders, managing symptoms in Tourette syndrome, and patient-reported muscle spasticity from multiple sclerosis. However, tolerance and the risk for cannabis use disorder are two significant disadvantages for cannabinoid-based therapies in humans. Recent work has revealed prominent sex differences in the acute response and tolerance to cannabinoids in both humans and animal models. This review will discuss evidence demonstrating cannabinoid tolerance in rodents, non-human primates, and humans and our current understanding of the neuroadaptations occurring at the cannabinoid type 1 receptor (CB1R) that are responsible tolerance. CB1R expression is downregulated in tolerant animals and humans while there is strong evidence of CB1R desensitization in cannabinoid tolerant rodent models. Throughout the review, critical knowledge gaps are indicated and discussed, such as the lack of a neuroimaging probe to assess CB1R desensitization in humans. The review discusses the intracellular signaling pathways that are responsible for mediating CB1R desensitization and downregulation including the action of G protein-coupled receptor kinases, ß-arrestin2 recruitment, c-Jun N-terminal kinases, protein kinase A, and the intracellular trafficking of CB1R. Finally, the review discusses approaches to reduce cannabinoid tolerance in humans based on our current understanding of the neuroadaptations and mechanisms responsible for this process.


Assuntos
Canabinoides , Animais , Feminino , Humanos , Masculino , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Dronabinol/uso terapêutico , Espasticidade Muscular/tratamento farmacológico , Agonistas de Receptores de Canabinoides , Transdução de Sinais/fisiologia , Receptores de Canabinoides , Receptor CB1 de Canabinoide
5.
J Pharmacol Exp Ther ; 385(1): 17-34, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36669876

RESUMO

Tolerance to compounds that target G protein-coupled receptors (GPCRs), such as the cannabinoid type-1 receptor (CB1R), is in part facilitated by receptor desensitization. Processes that mediate CB1R desensitization include phosphorylation of CB1R residues S426 and S430 by a GPCR kinase and subsequent recruitment of the ß-arrestin2 scaffolding protein. Tolerance to cannabinoid drugs is reduced in S426A/S430A mutant mice and ß-arrestin2 knockout (KO) mice according to previous work in vivo. However, the presence of additional phosphorylatable residues on the CB1R C-terminus made it unclear as to whether recruitment to S426 and S430 accounted for all desensitization and tolerance by ß-arrestin2. Therefore, we assessed acute response and tolerance to the cannabinoids delta-9-tetrahydrocannabinol (Δ9-THC) and CP55,940 in S426A/S430A x ß-arrestin2 KO double-mutant mice. We observed both delayed tolerance and increased sensitivity to the antinociceptive and hypothermic effects of CP55,940 in male S426A/S430A single- and double-mutant mice compared with wild-type littermates, but not with Δ9-THC. Female S426A/S430A single- and double-mutant mice were more sensitive to acute antinociception (CP55,940 and Δ9-THC) and hypothermia (CP55,940 only) exclusively after chronic dosing and did not differ in the development of tolerance. These results indicate that phosphorylation of S426 and S430 are likely responsible for ß-arrestin2-mediated desensitization as double-mutant mice did not differ from the S426A/S430A single-mutant model in respect to cannabinoid tolerance and sensitivity. We also found antinociceptive and hypothermic effects from cannabinoid treatment demonstrated by sex-, agonist-, and duration-dependent features. SIGNIFICANCE STATEMENT: A better understanding of the molecular mechanisms involved in tolerance will improve the therapeutic potential of cannabinoid drugs. This study determined that further deletion of ß-arrestin2 does not enhance the delay in cannabinoid tolerance observed in CB1R S426A/S430A mutant mice.


Assuntos
Canabinoides , Camundongos , Masculino , Feminino , Animais , Canabinoides/farmacologia , Dronabinol/farmacologia , beta-Arrestina 2/genética , Camundongos Knockout , Receptores de Canabinoides , Analgésicos/farmacologia , Receptor CB1 de Canabinoide/genética
6.
Front Pharmacol ; 13: 968976, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249788

RESUMO

Korean scientists have shown that oral administration of Angelica gigas Nakai (AGN) root alcoholic extract and the metabolite of its pyranocoumarins, decursinol, have antinociceptive properties across various thermal and acute inflammatory pain models. The objectives of this study were 1) to assess whether tolerance develops to the antinociceptive effects of once-daily intraperitoneally administered decursinol (50 mg/kg) in acute thermal pain models, 2) to establish its anti-allodynic efficacy and potential tolerance development in a model of chemotherapy-evoked neuropathic pain (CENP) and 3) to probe the involvement of select receptors in mediating the pain-relieving effects with antagonists. The results show that decursinol induced antinociception in both the hot plate and tail-flick assays and reversed mechanical allodynia in mice with cisplatin-evoked neuropathic pain. Tolerance was detected to the antinociceptive effects of decursinol in the hot plate and tail-flick assays and to the anti-allodynic effects of decursinol in neuropathic mice. Pretreatment with either the 5-HT2 antagonist methysergide, the 5-HT2A antagonist volinanserin, or the 5-HT2C antagonist SB-242084 failed to attenuate decursinol-induced antinociception in the tail-flick assay. While pretreatment with the cannabinoid inverse agonists rimonabant and SR144528 failed to modify decursinol-induced anti-allodynia, pretreatment with the opioid antagonist naloxone partially attenuated the anti-allodynic effects of decursinol. In conclusion, our data support decursinol as an active phytochemical of AGN having both antinociceptive and anti-allodynic properties. Future work warrants a more critical investigation of potential receptor mechanisms as they are likely more complicated than initially reported.

7.
Psychopharmacology (Berl) ; 239(5): 1289-1309, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34165606

RESUMO

RATIONALE: Tolerance to cannabinoids could limit their therapeutic potential. Male mice expressing a desensitization-resistant form (S426A/S430A) of the type-1 cannabinoid receptor (CB1R) show delayed tolerance to delta-9-tetrahydrocannabinol (∆9-THC) but not CP55,940. With more women than men using medical cannabis for pain relief, it is essential to understand sex differences in cannabinoid antinociception, hypothermia, and resultant tolerance. OBJECTIVE: Our objective was to determine whether female mice rely on the same molecular mechanisms for tolerance to the antinociceptive and/or hypothermic effects of cannabinoids that we have previously reported in males. We determined whether the S426A/S430A mutation differentially disrupts antinociceptive and/or hypothermic tolerance to CP55,940 and/or Δ9-THC in male and female S426A/S430A mutant and wild-type littermates. RESULTS: The S426A/S430A mutation conferred an enhanced antinociceptive response for ∆9-THC and CP55,940 in both male and female mice. While the S426A/S430A mutation conferred partial resistance to ∆9-THC tolerance in male mice, disruption of CB1R desensitization had no effect on tolerance to ∆9-THC in female mice. The mutation did not alter tolerance to the hypothermic effects of ∆9-THC or CP55,940 in either sex. Interestingly, female mice were markedly less sensitive to the antinociceptive effects of 30 mg/kg ∆9-THC and 0.3 mg/kg CP55,940 compared with male mice. CONCLUSIONS: Our results suggest that disruption of the GRK/ßarrestin2 pathway of desensitization alters tolerance to Δ9-THC but not CP55,940 in male but not female mice. As tolerance to Δ9-THC appears to develop differently in males and females, sex should be considered when assessing the therapeutic potential and dependence liability of cannabinoids.


Assuntos
Canabinoides , Hipotermia , Analgésicos/farmacologia , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Cicloexanóis , Dronabinol/farmacologia , Feminino , Humanos , Masculino , Camundongos
8.
Front Mol Biosci ; 8: 684115, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34250019

RESUMO

Tolerance to the pain-relieving effects of cannabinoids limits the therapeutic potential of these drugs in patients with chronic pain. Recent preclinical research with rodents and clinical studies in humans has suggested important differences between males and females in the development of tolerance to cannabinoids. Our previous work found that male mice expressing a desensitization resistant form (S426A/S430A) of the type 1 cannabinoid receptor (CB1R) show delayed tolerance and increased sensitivity to the antinociceptive effects of delta-9-tetrahydrocannabinol (∆9-THC). Sex differences in tolerance have been reported in rodent models with females acquiring tolerance to ∆9-THC faster than males. However, it remains unknown whether the S426A/S430A mutation alters analgesic tolerance to ∆9-THC in mice with chemotherapy-evoked chronic neuropathic pain, and also whether this tolerance might be different between males and females. Male and female S426A/S430A mutant and wild-type littermates were made neuropathic using four once-weekly injections of 5 mg/kg cisplatin and subsequently assessed for tolerance to the anti-allodynic effects of 6 and/or 10 mg/kg ∆9-THC. Females acquired tolerance to the anti-allodynic effects of both 6 and 10 mg/kg ∆9-THC faster than males. In contrast, the S426A/S430A mutation did not alter tolerance to ∆9-THC in either male or female mice. The anti-allodynic effects of ∆9-THC were blocked following pretreatment with the CB1R antagonist, rimonabant, and partially blocked following pretreatment with the CB2R inverse agonist, SR144528. Our results show that disruption of the GRK/ß-arrestin-2 pathway of desensitization did not affect sensitivity and/or tolerance to ∆9-THC in a chronic pain model of neuropathy.

9.
Neuropharmacology ; 164: 107847, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31758947

RESUMO

Tolerance to the antinociceptive effects of cannabinoids represents a significant limitation to their clinical use in managing chronic pain. Tolerance likely results from desensitization and down-regulation of the cannabinoid type 1 receptor (CB1R), with CB1R desensitization occurring via phosphorylation of CB1Rs by a G protein-coupled receptor kinase and subsequent association with an arrestin protein. Previous studies have shown that (1) desensitization-resistant S426A/S430A mice exhibit a modest delay in tolerance for Δ9-THC and (-)-CP55,940 but a more pronounced disruption in tolerance for WIN 55,212-2 and (2) that c-Jun N-terminal kinase (JNK) signaling may selectively mediate antinociceptive tolerance to morphine compared to other opioid analgesics. In the current study, we found that pretreatment with the JNK inhibitor SP600125 (3 mg/kg) attenuates tolerance to the antinociceptive in the formalin test and to the anti-allodynic effects of Δ9-THC (6 mg/kg) in cisplatin-evoked neuropathic pain using wild-type mice. We also find that SP600125 causes an especially robust reduction in tolerance to the antinociceptive effects of Δ9-THC (30 mg/kg), but not WIN 55,212-2 (10 mg/kg) in the tail-flick assay using S426A/S430A mice. Interestingly, SP600125 pretreatment accelerated tolerance to the antinociceptive and anti-allodynic effects of (-)-CP55,940 (0.3 mg/kg) in mice with acute and neuropathic pain. These results demonstrate that inhibition of JNK signaling pathways delay tolerance to Δ9-THC, but not to CP55,940 or WIN55,212-2, demonstrating that the mechanisms of cannabinoid tolerance are agonist-specific.


Assuntos
Analgésicos/farmacologia , Canabinoides/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Antracenos/farmacologia , Benzoxazinas/farmacologia , Cisplatino , Dronabinol/farmacologia , Tolerância a Medicamentos , Hiperalgesia/tratamento farmacológico , Masculino , Camundongos , Morfolinas/farmacologia , Naftalenos/farmacologia , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Medição da Dor
10.
Neuropharmacology ; 148: 151-159, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30629988

RESUMO

Tolerance to cannabinoid agonists can develop through desensitization of the cannabinoid receptor 1 (CB1) following prolonged administration. Desensitization results from phosphorylation of CB1 by a G protein-coupled receptor kinase (GRK), and subsequent association of the receptor with arrestin. Mice expressing a mutant form of CB1, in which the serine residues at two putative phosphorylation sites necessary for desensitization have been replaced by non-phosphorylatable alanines (S426A/S430A), display reduced tolerance to Δ9-tetrahydrocannabinol (Δ9-THC). Tolerance to the antinociceptive effects of WIN55,212-2 was delayed in S426A/S430A mutants using the tail-flick and formalin tests. However, tolerance to the antinociceptive effects of once daily CP55,940 injections was not significantly delayed in S426A/S430A mutant mice using either of these tests. Interestingly, the dose response curve shifts for the hypothermic and antinociceptive effects of CP55,940 that were induced by chronic treatment with this agonist in wild-type mice were blocked in S426A/S430A mutant mice. Assessment of mechanical allodynia in mice exhibiting chronic cisplatin-evoked neuropathic pain found that tolerance to the anti-allodynic effects WIN55,212-2 but not CP55,940 was delayed in S426A/S430A mice compared to wild-type littermates. Despite these deficits in tolerance, S426A/S430A mutant mice eventually developed tolerance to both WIN55,212-2 and CP55,940 for all pain assays that were examined, suggesting that other mechanisms likely contribute to tolerance for these cannabinoid agonists. These findings suggest that GRK- and ßarrestin2-mediated desensitization of CB1 may strongly contribute to the rate of tolerance to the antinociceptive effects of WIN55,212-2, and raises the possibility of agonist-specific mechanisms of cannabinoid tolerance.


Assuntos
Benzoxazinas/farmacologia , Tolerância a Medicamentos , Morfolinas/farmacologia , Naftalenos/farmacologia , Receptor CB1 de Canabinoide/genética , Animais , Cicloexanóis/farmacologia , Relação Dose-Resposta a Droga , Hiperalgesia/induzido quimicamente , Hiperalgesia/prevenção & controle , Hipotermia/induzido quimicamente , Masculino , Camundongos , Mutação , Medição da Dor/efeitos dos fármacos , Fatores de Tempo
11.
Neuroreport ; 29(6): 447-452, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29461336

RESUMO

Cannabinoids have shown promise for the treatment of intractable pain states and may represent an alternative pharmacotherapy for pain management. A growing body of clinical evidence suggests a role for sex in pain perception and in cannabinoid response. We examined cannabinoid sensitivity and tolerance in male and female mice expressing a desensitization-resistant form (S426A/S430A) of the cannabinoid type 1 receptor (CB1R). Mice were assessed for acute and inflammatory nociceptive behaviors in the formalin test following pretreatment with either vehicle or mixed CB1R/CB2R agonists, Δ-9-tetrahydrocannabinol ([INCREMENT]-THC) (1-6 mg/kg) or CP 55,940 (0.06-0.2 mg/kg). Tolerance to the effects of 6 mg/kg [INCREMENT]-THC or 0.1 mg/kg CP 55,940 was examined by the formalin test following chronic daily dosing. Female mice showed decreased sensitivity to the effects of [INCREMENT]-THC and CP 55,940 compared with male mice. The S426A/S430A mutation increased the attenuation of nociceptive behaviors for both agonists in both sexes. Female mice displayed delayed tolerance to [INCREMENT]-THC compared with male mice, whereas the S426A/S430A mutation conferred a delay in tolerance to [INCREMENT]-THC in both sexes. Male S426A/S430A mutant mice also display resistance to tolerance to CP 55,940 compared with wild-type controls. This study demonstrates sex and genotype differences in response for two different cannabinoid agonists. The results underscore the importance of including both male and female mice in preclinical studies of pain and cannabinoid pharmacology.


Assuntos
Analgésicos/uso terapêutico , Cicloexanóis/uso terapêutico , Dronabinol/uso terapêutico , Formaldeído/toxicidade , Formaldeído/uso terapêutico , Caracteres Sexuais , Análise de Variância , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Tolerância a Medicamentos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Dor/induzido quimicamente , Medição da Dor , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Fatores de Tempo , Resultado do Tratamento
12.
Brain Res Bull ; 138: 12-19, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28780411

RESUMO

The A118G single nucleotide polymorphism (SNP) of the mu-opioid receptor gene (Oprm1) has been implicated in mediating the rewarding effects of alcohol. Clinical and preclinical studies suggest that the G allele may confer a genetic vulnerability to alcohol dependence, though it remains unknown whether these effects are sex-specific. We used male and female mice homozygous for the "humanized" 118AA or 118GG alleles to determine whether the A118G SNP potentiates ethanol consumption in a sex-specific manner in both the two-bottle choice and drinking-in-the-dark (DID) paradigms. Mice were also assessed for differences in naltrexone sensitivity, ethanol reward assessed via conditioned place preference (CPP), and sensitivity to the sedative/ataxic effects of ethanol using the rota-rod and loss of righting reflex (LORR) assays. We found that male and female 118GG mice drank significantly more ethanol than 118AA littermates using a continuous access, two-bottle choice paradigm. In the limited-access DID drinking model, (i) female (but not male) 118GG mice consumed more ethanol than 118AA mice and (ii) naltrexone pretreatment was equally efficacious at attenuating ethanol intake in both 118AA and 118GG female mice while having no effect in males. Male and female 118GG and female 118AA mice developed a robust conditioned place preference (CPP) for ethanol. Female 118GG mice displayed less sensitivity to the sedative/ataxic effects of ethanol compared to female 118AA mice on both the rota-rod and the LORR assays while male mice did not differ in their responses on either assay. Our findings suggest that increased ethanol consumption in male 118GG mice may be due to increased ethanol reward, while increased drinking in female 118GG mice might be due to decreased sensitivity to the sedative/ataxic effects of ethanol. Collectively, these data might be used to help identify sex-specific pharmacotherapies to combat alcohol use disorders.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores Opioides mu/genética , Caracteres Sexuais , Consumo de Bebidas Alcoólicas/fisiopatologia , Alelos , Analgésicos não Narcóticos/farmacologia , Análise de Variância , Animais , Comportamento de Escolha/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Relação Dose-Resposta a Droga , Etanol/administração & dosagem , Etanol/sangue , Feminino , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Quinina/farmacologia , Receptores Opioides mu/metabolismo , Reflexo/efeitos dos fármacos , Reflexo/genética , Recompensa , Autoadministração , Autoestimulação
13.
Brain Res Bull ; 138: 64-72, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28684345

RESUMO

Currently, more than 78.6 million adults in the United States are obese. A majority of the patient population receiving treatment for pain symptoms is derived from this subpopulation. Environmental factors, including the increased availability of food high in fat and sugar, contribute to the continued rise in the rates of obesity. The focus of this study was to investigate whether long-term exposure to a high-fat, energy-dense diet enhances baseline thermal and inflammatory nociception while reducing sensitivity to morphine-induced antinociception. Antinociceptive and hypothermic responses to morphine were determined in male and female C57BL/6N mice fed either a "western-style" diet high in fat and sucrose (HED) or a standard low-fat chow diet for 15 weeks. Antinociception was assessed using both the hot plate and tail flick tests of acute thermal pain and the formalin test of inflammatory pain. Acute administration of morphine dose-dependently increased antinociception in the hot plate and tail flick assays for mice of both sexes fed chow and HED. However, female mice displayed lower antinociceptive response to morphine compared to males in the tail-flick test. Hypothermic responses to acute morphine were also assessed in mice fed chow or HED. Male and female mice fed chow, and female mice fed HED displayed similar hypothermic responses to morphine. However, males fed HED did not exhibit morphine-induced hypothermia. Tolerance to the antinociceptive and hypothermic effects of morphine was assessed after ten days of repeated daily administration (10mg/kg morphine). Male mice fed chow or HED developed tolerance to morphine in the hot plate test. However, females fed HED did not. In the tail flick assay, only mice fed HED developed tolerance to morphine. All groups showed tolerance to morphine-induced hypothermia. In the formalin test, we found that both male and female mice fed HED had reduced sensitivity to the antinociceptive effects of morphine (6mg/kg). Collectively, these data suggest that sensitivity and tolerance to the antinociceptive effects of morphine may be dependent on diet and sex in the hot plate and tail flick thermal pain models, and that the acute antinociceptive effects of morphine in the formalin inflammatory pain model may also be dependent on these two factors. In addition, diet and sex can influence morphine-induced hypothermia. Exposure to an HED may lead to changes in neuronal signaling pathways that alter nociceptive responses to noxious stimuli in a sex-specific manner. Thus, dietary modifications might be a useful way to impact pain therapy.


Assuntos
Composição Corporal/efeitos dos fármacos , Dieta Hiperlipídica , Morfina/farmacologia , Entorpecentes/farmacologia , Nociceptividade/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Hiperalgesia/tratamento farmacológico , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dor/tratamento farmacológico , Dor/etiologia , Medição da Dor/efeitos dos fármacos , Caracteres Sexuais
14.
PLoS One ; 12(4): e0174826, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28426670

RESUMO

We recently characterized S426A/S430A mutant mice expressing a desensitization-resistant form of the CB1 receptor. These mice display an enhanced response to endocannabinoids and ∆9-THC. In this study, S426A/S430A mutants were used as a novel model to test whether ethanol consumption, morphine dependence, and reward for these drugs are potentiated in mice with a "hyper-sensitive" form of CB1. Using an unlimited-access, two-bottle choice, voluntary drinking paradigm, S426A/S430A mutants exhibit modestly increased intake and preference for low (6%) but not higher concentrations of ethanol. S426A/S430A mutants and wild-type mice show similar taste preference for sucrose and quinine, exhibit normal sensitivity to the hypothermic and ataxic effects of ethanol, and have normal blood ethanol concentrations following administration of ethanol. S426A/S430A mutants develop robust conditioned place preference for ethanol (2 g/kg), morphine (10 mg/kg), and cocaine (10 mg/kg), demonstrating that drug reward is not changed in S426A/S430A mutants. Precipitated morphine withdrawal is also unchanged in opioid-dependent S426A/S430A mutant mice. Although ethanol consumption is modestly changed by enhanced CB1 signaling, reward, tolerance, and acute sensitivity to ethanol and morphine are normal in this model.


Assuntos
Consumo de Bebidas Alcoólicas , Receptor CB1 de Canabinoide/metabolismo , Animais , Cocaína/administração & dosagem , Condicionamento Operante , Tolerância a Medicamentos , Etanol/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Morfina/administração & dosagem , Mutação
15.
PLoS One ; 11(8): e0160462, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27501235

RESUMO

Multiple lines of evidence implicate the endocannabinoid signaling system in the modulation of metabolic disease. Genetic or pharmacological inactivation of CB1 in rodents leads to reduced body weight, resistance to diet-induced obesity, decreased intake of highly palatable food, and increased energy expenditure. Cannabinoid agonists stimulate feeding in rodents and increased levels of endocannabinoids can disrupt lipid metabolism. Therefore, the hypothesis that sustained endocannabinoid signaling can lead to obesity and diabetes was examined in this study using S426A/S430A mutant mice expressing a desensitization-resistant CB1 receptor. These mice display exaggerated and prolonged responses to acute administration of phytocannabinoids, synthetic cannabinoids, and endocannabinoids. As a consequence these mice represent a novel model for determining the effect of enhanced endocannabinoid signaling on metabolic disease. S426A/S430A mutants consumed equivalent amounts of both high fat (45%) and low fat (10%) chow control diet compared to wild-type littermate controls. S426A/S430A mutants and wild-type mice fed either high or low fat control diet displayed similar fasting blood glucose levels and normal glucose clearance following a 2 g/kg glucose challenge. Furthermore, S426A/S430A mutants and wild-type mice consumed similar amounts of chow following an overnight fast. While both THC and JZL195 significantly increased food intake two hours after injection, this increase was similar between the S426A/S430A mutant and wildtype control mice Our results indicate that S426A/S430A mutant mice expressing the desensitization-resistant form of CB1 do not exhibit differences in body weight, food intake, glucose homeostasis, or re-feeding following a fast.


Assuntos
Dronabinol/farmacologia , Ingestão de Alimentos/genética , Receptor CB1 de Canabinoide/genética , Substituição de Aminoácidos , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/genética , Carbamatos/farmacologia , Diabetes Mellitus Experimental/metabolismo , Relação Dose-Resposta a Droga , Ingestão de Alimentos/efeitos dos fármacos , Teste de Tolerância a Glucose , Masculino , Camundongos Mutantes , Obesidade/metabolismo , Piperazinas/farmacologia , Receptor CB1 de Canabinoide/metabolismo
16.
Brain Res Bull ; 123: 5-12, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26521067

RESUMO

The rewarding and antinociceptive effects of opioids are mediated through the mu-opioid receptor. The A118G single nucleotide polymorphism in this receptor has been implicated in drug addiction and differences in pain response. Clinical and preclinical studies have found that the G allele is associated with increased heroin reward and self-administration, elevated post-operative pain, and reduced analgesic responsiveness to opioids. Male and female mice homozygous for the "humanized" 118AA or 118GG alleles were evaluated to test the hypothesis that 118GG mice are less sensitive to the rewarding and antinociceptive effects of morphine. We found that 118AA and 118GG mice of both genders developed conditioned place preference for morphine. All mice developed tolerance to the antinociceptive and hypothermic effects of morphine. However, morphine tolerance was not different between AA and GG mice. We also examined sensitivity to the antinociceptive and hypothermic effects of cumulative morphine doses. We found that 118GG mice show reduced hypothermic and antinociceptive responses on the hotplate for 10mg/kg morphine. Finally, we examined basal pain response and morphine-induced antinociception in the formalin test for inflammatory pain. We found no gender or genotype differences in either basal pain response or morphine-induced antinociception in the formalin test. Our data suggests that homozygous expression of the GG allele in mice blunts morphine-induced hypothermia and hotplate antinociception but does not alter morphine CPP, morphine tolerance, or basal inflammatory pain response.


Assuntos
Dor/genética , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Alelos , Analgésicos/metabolismo , Analgésicos/farmacologia , Analgésicos Opioides/farmacologia , Animais , Tolerância a Medicamentos/genética , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Morfina/farmacologia , Dor/tratamento farmacológico , Medição da Dor/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-26123153

RESUMO

Alcohol use disorder represents a significant human health problem that leads to substantial loss of human life and financial cost to society. Currently available treatment options do not adequately address this human health problem, and thus, additional therapies are desperately needed. The endocannabinoid system has been shown, using animal models, to modulate ethanol-motivated behavior, and it has also been demonstrated that chronic ethanol exposure can have potentially long-lasting effects on the endocannabinoid system. For example, chronic exposure to ethanol, in either cell culture or preclinical rodent models, causes an increase in endocannabinoid levels that results in down-regulation of the cannabinoid receptor 1 (CB1) and uncoupling of this receptor from downstream G protein signaling pathways. Using positron emission tomography (PET), similar down-regulation of CB1 has been noted in multiple regions of the brain in human alcoholic patients. In rodents, treatment with the CB1 inverse agonist SR141716A (Rimonabant), or genetic deletion of CB1 leads to a reduction in voluntary ethanol drinking, ethanol-stimulated dopamine release in the nucleus accumbens, operant self-administration of ethanol, sensitization to the locomotor effects of ethanol, and reinstatement/relapse of ethanol-motivated behavior. Although the clinical utility of Rimonabant or other antagonists/inverse agonists for CB1 is limited due to negative neuropsychiatric side effects, negative allosteric modulators of CB1 and inhibitors of endocannabinoid catabolism represent therapeutic targets worthy of additional examination.


Assuntos
Transtornos Relacionados ao Uso de Álcool/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Endocanabinoides/metabolismo , Etanol/farmacologia , Motivação/efeitos dos fármacos , Motivação/fisiologia , Animais , Depressores do Sistema Nervoso Central/toxicidade , Etanol/toxicidade , Humanos
18.
Psychopharmacology (Berl) ; 231(22): 4309-21, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24770627

RESUMO

The endogenous opioid system has been implicated in mediating the reinforcing effects of ethanol (EtOH). Naltrexone (NTX), an opioid antagonist with concentration-dependent selectivity for the mu receptor, naltrindole (NTI), a selective delta receptor antagonist, and U50,488H, a selective kappa receptor agonist were examined in both alcohol-preferring (P) and nonselected (Long Evans (LE)) rats to determine whether they differentially affected the seeking and consumption of EtOH and sucrose. Using the sipper-tube model, rats reinforced with either 2% sucrose or 10% EtOH were injected with vehicle and either NTI (2.5, 5.0, or 10.0 mg/kg), U50 (2.5, 5.0, or 10.0 mg/kg), low-dose NTX (0.1, 0.3, or 1.0 mg/kg), or high-dose NTX (1.0, 3.0, or 10.0 mg/kg). Subsequent intakes (consummatory) or lever responses (seeking) were assessed. Overall, NTI, U50, and NTX attenuated intake and responding for sucrose and EtOH, with EtOH-reinforced P rats being the most sensitive to the effects of NTI on intake and seeking. U50 treatment decreased intake and seeking in both P and LE rats but did not selectively reduce EtOH intake or seeking in either line. P rats were more sensitive than LE rats to lower doses of NTX, and these doses more selectively attenuated responding for EtOH than sucrose. Higher doses of NTX suppressed intake and responding across both lines and reinforcers. These results suggest that drugs selective for the opioid receptors may be good pharmacotherapeutic targets, particularly in those with an underlying genetic predisposition for greater EtOH preference/intake.


Assuntos
Comportamento Aditivo/metabolismo , Comportamento Animal/efeitos dos fármacos , Etanol/farmacologia , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides/metabolismo , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/administração & dosagem , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Analgésicos não Narcóticos/administração & dosagem , Analgésicos não Narcóticos/farmacologia , Animais , Etanol/administração & dosagem , Ligantes , Masculino , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/administração & dosagem , Ratos , Ratos Long-Evans , Sacarose/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...