Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(6): 107323, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677516

RESUMO

Organelles and vesicular cargoes are transported by teams of kinesin and dynein motors along microtubules. We isolated endocytic organelles from cells at different stages of maturation and reconstituted their motility along microtubules in vitro. We asked how the sets of motors transporting a cargo determine its motility and response to the microtubule-associated protein tau. Here, we find that phagosomes move in both directions along microtubules, but the directional bias changes during maturation. Early phagosomes exhibit retrograde-biased transport while late phagosomes are directionally unbiased. Correspondingly, early and late phagosomes are bound by different numbers and combinations of kinesins-1, -2, -3, and dynein. Tau stabilizes microtubules and directs transport within neurons. While single-molecule studies show that tau differentially regulates the motility of kinesins and dynein in vitro, less is known about its role in modulating the trafficking of endogenous cargoes transported by their native teams of motors. Previous studies showed that tau preferentially inhibits kinesin motors, which biases late phagosome transport towards the microtubule minus-end. Here, we show that tau strongly inhibits long-range, dynein-mediated motility of early phagosomes. Tau reduces forces generated by teams of dynein motors on early phagosomes and accelerates dynein unbinding under load. Thus, cargoes differentially respond to tau, where dynein complexes on early phagosomes are more sensitive to tau inhibition than those on late phagosomes. Mathematical modeling further explains how small changes in the number of kinesins and dynein on cargoes impact the net directionality but also that cargoes with different sets of motors respond differently to tau.

2.
Mol Biol Cell ; 34(11): ar111, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37610838

RESUMO

Kinesin-5 crosslinks and slides apart microtubules to assemble, elongate, and maintain the mitotic spindle. Kinesin-5 is a tetramer, where two N-terminal motor domains are positioned at each end of the motor, and the coiled-coil stalk domains are organized into a tetrameric bundle through the bipolar assembly (BASS) domain. To dissect the function of the individual structural elements of the motor, we constructed a minimal kinesin-5 tetramer (mini-tetramer). We determined the x-ray structure of the extended, 34-nm BASS domain. Guided by these structural studies, we generated active bipolar kinesin-5 mini-tetramer motors from Drosophila melanogastor and human orthologues which are half the length of native kinesin-5. We then used these kinesin-5 mini-tetramers to examine the role of two unique structural adaptations of kinesin-5: 1) the length and flexibility of the tetramer, and 2) the C-terminal tails which interact with the motor domains to coordinate their ATPase activity. The C-terminal domain causes frequent pausing and clustering of kinesin-5. By comparing microtubule crosslinking and sliding by mini-tetramer and full-length kinesin-5, we find that both the length and flexibility of kinesin-5 and the C-terminal tails govern its ability to crosslink microtubules. Once crosslinked, stiffer mini-tetramers slide antiparallel microtubules more efficiently than full-length motors.


Assuntos
Cinesinas , Microtúbulos , Humanos , Animais , Fuso Acromático , Análise por Conglomerados , Drosophila
3.
Biophys J ; 122(7): 1168-1184, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36772794

RESUMO

Huntingtin (HTT) is a scaffolding protein that recruits motor proteins to vesicular cargoes, enabling it to regulate kinesin-1, dynein, and myosin-VI-dependent transport. To maintain the native stoichiometry of HTT with its interacting partners, we used CRISPR/Cas9 to induce a phosphomimetic mutation of the endogenous HTT at S421 (HTT-S421D). Using single-particle tracking, optical tweezers, and immunofluorescence, we examined the effects of this mutation on the motility of early endosomes and lysosomes. In HTT-S421D cells, lysosomes exhibit longer displacements and higher processive fractions compared with wild-type (HTT-WT) cells. Kinesins and dyneins exert greater forces on early endosomes and lysosomes in cells expressing HTT-S421D. In addition, endosomes bind to microtubules faster and are more resistant to detachment under load. The recruitment of kinesins and dyneins to microtubules is enhanced in HTT-S421D cells. In contrast, overexpression of HTT had variable effects on the processivity, displacement, and directional bias of both early endosomes and lysosomes. These data indicate that phosphorylation of the endogenous HTT causes early endosomes and lysosomes to move longer distances and more processively by recruiting and activating both kinesin-1 and dynein.


Assuntos
Dineínas , Cinesinas , Dineínas/metabolismo , Cinesinas/metabolismo , Fosforilação , Lisossomos/metabolismo , Microtúbulos/metabolismo , Endossomos/metabolismo
4.
Methods Mol Biol ; 2623: 113-132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36602683

RESUMO

In this chapter, we describe methods for reconstituting and analyzing the transport of isolated endogenous cargoes in vitro. Intracellular cargoes are transported along microtubules by teams of kinesin and dynein motors and their cargo-specific adaptor proteins. Observations from living cells show that organelles and vesicular cargoes exhibit diverse motility characteristics. Yet, our knowledge of the molecular mechanisms by which intracellular transport is regulated is not well understood. Here, we describe step-by-step protocols for the extraction of phagosomes from cells at different stages of maturation, and reconstitution of their motility along microtubules in vitro. Quantitative immunofluorescence and photobleaching techniques are also described to measure the number of motors and adaptor proteins on these isolated cargoes. In addition, we describe techniques for tracking the motility of isolated cargoes along microtubules using TIRF microscopy and quantitative force measurements using an optical trap. These methods enable us to study how the sets of motors and adaptors that drive the transport of endogenous cargoes regulate their trafficking in cells.


Assuntos
Dineínas , Microtúbulos , Microtúbulos/metabolismo , Dineínas/metabolismo , Cinesinas/metabolismo , Transporte Biológico , Fagossomos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
5.
Mol Biol Cell ; 33(13): ar128, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36129768

RESUMO

Microtubule-associated proteins (MAPs) modulate the motility of kinesin and dynein along microtubules to control the transport of vesicles and organelles. The neuronal MAP tau inhibits kinesin-dependent transport. Phosphorylation of tau at Tyr-18 by fyn kinase results in weakened inhibition of kinesin-1. We examined the motility of early endosomes and lysosomes in cells expressing wild-type (WT) tau and phosphomimetic Y18E tau. We quantified the effects on motility as a function of the tau expression level. Lysosome motility is strongly inhibited by tau. Y18E tau preferentially inhibits lysosomes in the cell periphery, while centrally located lysosomes are less affected. Early endosomes are more sensitive to tau than lysosomes and are inhibited by both WT and Y18E tau. Our results show that different cargoes have disparate responses to tau, likely governed by the types of kinesin motors driving their transport. In support of this model, kinesin-1 and -3 are strongly inhibited by tau while kinesin-2 and dynein are less affected. In contrast to kinesin-1, we find that kinesin-3 is strongly inhibited by phosphorylated tau.


Assuntos
Dineínas , Cinesinas , Dineínas/metabolismo , Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Lisossomos/metabolismo , Endossomos/metabolismo , Proteínas tau/metabolismo , Transporte Biológico
6.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35135879

RESUMO

The microtubule-associated protein (MAP) Tau is an intrinsically disordered protein (IDP) primarily expressed in axons, where it functions to regulate microtubule dynamics, modulate motor protein motility, and participate in signaling cascades. Tau misregulation and point mutations are linked to neurodegenerative diseases, including progressive supranuclear palsy (PSP), Pick's disease, and Alzheimer's disease. Many disease-associated mutations in Tau occur in the C-terminal microtubule-binding domain of the protein. Effects of C-terminal mutations in Tau have led to the widely accepted disease-state theory that missense mutations in Tau reduce microtubule-binding affinity or increase Tau propensity to aggregate. Here, we investigate the effect of an N-terminal arginine to leucine mutation at position 5 in Tau (R5L), associated with PSP, on Tau-microtubule interactions using an in vitro reconstituted system. Contrary to the canonical disease-state theory, we determine that the R5L mutation does not reduce Tau affinity for the microtubule using total internal reflection fluorescence microscopy. Rather, the R5L mutation decreases the ability of Tau to form larger-order complexes, or Tau patches, at high concentrations of Tau. Using NMR, we show that the R5L mutation results in a local structural change that reduces interactions of the projection domain in the presence of microtubules. Altogether, these results challenge both the current paradigm of how mutations in Tau lead to disease and the role of the projection domain in modulating Tau behavior on the microtubule surface.


Assuntos
Microtúbulos/metabolismo , Proteínas tau/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Humanos , Microtúbulos/química , Microtúbulos/genética , Mutação , Proteínas tau/química , Proteínas tau/genética
7.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34887356

RESUMO

Membrane invagination and vesicle formation are key steps in endocytosis and cellular trafficking. Here, we show that endocytic coat proteins with prion-like domains (PLDs) form hemispherical puncta in the budding yeast, Saccharomyces cerevisiae These puncta have the hallmarks of biomolecular condensates and organize proteins at the membrane for actin-dependent endocytosis. They also enable membrane remodeling to drive actin-independent endocytosis. The puncta, which we refer to as endocytic condensates, form and dissolve reversibly in response to changes in temperature and solution conditions. We find that endocytic condensates are organized around dynamic protein-protein interaction networks, which involve interactions among PLDs with high glutamine contents. The endocytic coat protein Sla1 is at the hub of the protein-protein interaction network. Using active rheology, we inferred the material properties of endocytic condensates. These experiments show that endocytic condensates are akin to viscoelastic materials. We use these characterizations to estimate the interfacial tension between endocytic condensates and their surroundings. We then adapt the physics of contact mechanics, specifically modifications of Hertz theory, to develop a quantitative framework for describing how interfacial tensions among condensates, the membrane, and the cytosol can deform the plasma membrane to enable actin-independent endocytosis.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Endocitose/fisiologia , Príons/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Membrana Celular , Proteínas do Citoesqueleto/genética , Citosol/fisiologia , Regulação Fúngica da Expressão Gênica , Glutamina/química , Mecanotransdução Celular , Conformação Proteica , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Substâncias Viscoelásticas
8.
Mol Biol Cell ; 31(16): 1744-1752, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32579489

RESUMO

Cells precisely control their mechanical properties to organize and differentiate into tissues. The architecture and connectivity of cytoskeletal filaments change in response to mechanical and biochemical cues, allowing the cell to rapidly tune its mechanics from highly cross-linked, elastic networks to weakly cross-linked viscous networks. While the role of actin cross-linking in controlling actin network mechanics is well-characterized in purified actin networks, its mechanical role in the cytoplasm of living cells remains unknown. Here, we probe the frequency-dependent intracellular viscoelastic properties of living cells using multifrequency excitation and in situ optical trap calibration. At long timescales in the intracellular environment, we observe that the cytoskeleton becomes fluid-like. The mechanics are well-captured by a model in which actin filaments are dynamically connected by a single dominant cross-linker. A disease-causing point mutation (K255E) of the actin cross-linker α-actinin 4 (ACTN4) causes its binding kinetics to be insensitive to tension. Under normal conditions, the viscoelastic properties of wild-type (WT) and K255E+/- cells are similar. However, when tension is reduced through myosin II inhibition, WT cells relax 3× faster to the fluid-like regime while K255E+/- cells are not affected. These results indicate that dynamic actin cross-linking enables the cytoplasm to flow at long timescales.


Assuntos
Actinas/metabolismo , Citoesqueleto/fisiologia , Elasticidade/fisiologia , Citoesqueleto de Actina/metabolismo , Actinas/fisiologia , Fenômenos Biofísicos , Linhagem Celular , Reagentes de Ligações Cruzadas/metabolismo , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Humanos , Cinética , Proteínas dos Microfilamentos/metabolismo , Pinças Ópticas , Polimerização , Ligação Proteica/fisiologia , Viscosidade
9.
J Biol Chem ; 294(26): 10160-10171, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31085585

RESUMO

Microtubule-associated proteins (MAPs) regulate microtubule polymerization, dynamics, and organization. In addition, MAPs alter the motility of kinesin and dynein to control trafficking along microtubules. MAP7 (ensconsin, E-MAP-115) is a ubiquitous MAP that organizes the microtubule cytoskeleton in mitosis and neuronal branching. MAP7 also recruits kinesin-1 to microtubules. To understand how the activation of kinesin-1 by MAP7 regulates the motility of organelles transported by ensembles of kinesin and dynein, we isolated organelles and reconstituted their motility in vitro In the absence of MAP7, isolated phagosomes exhibit approximately equal fractions of plus- and minus-end-directed motility along microtubules. MAP7 causes a pronounced shift in motility; phagosomes move toward the plus-end ∼80% of the time, and kinesin teams generate more force. To dissect MAP7-mediated regulation of kinesin-driven transport, we examined its effects on the motility and force generation of single and teams of full-length kinesin-1 motors. We find that MAP7 does not alter the force exerted by a single kinesin-1 motor, but instead increases its binding rate to the microtubule. For ensembles of kinesin, a greater number of kinesin motors are simultaneously engaged and generating force to preferentially target organelles toward the microtubule plus-end.


Assuntos
Movimento Celular , Cinesinas , Macrófagos , Proteínas Associadas aos Microtúbulos , Microtúbulos , Fagossomos , Animais , Camundongos , Transporte Biológico , Dineínas , Cinesinas/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Modelos Teóricos , Fagossomos/metabolismo , Transporte Proteico
10.
Traffic ; 19(2): 111-121, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29077261

RESUMO

Organelles, proteins, and mRNA are transported bidirectionally along microtubules by plus-end directed kinesin and minus-end directed dynein motors. Microtubules are decorated by microtubule-associated proteins (MAPs) that organize the cytoskeleton, regulate microtubule dynamics and modulate the interaction between motor proteins and microtubules to direct intracellular transport. Tau is a neuronal MAP that stabilizes axonal microtubules and crosslinks them into bundles. Dysregulation of tau leads to a range of neurodegenerative diseases known as tauopathies including Alzheimer's disease (AD). Tau reduces the processivity of kinesin and dynein by acting as an obstacle on the microtubule. Single-molecule assays indicate that kinesin-1 is more strongly inhibited than kinesin-2 or dynein, suggesting tau might act to spatially modulate the activity of specific motors. To investigate the role of tau in regulating bidirectional transport, we isolated phagosomes driven by kinesin-1, kinesin-2, and dynein and reconstituted their motility along microtubules. We find that tau biases bidirectional motility towards the microtubule minus-end in a dose-dependent manner. Optical trapping measurements show that tau increases the magnitude and frequency of forces exerted by dynein through inhibiting opposing kinesin motors. Mathematical modeling indicates that tau controls the directional bias of intracellular cargoes through differentially tuning the processivity of kinesin-1, kinesin-2, and dynein. Taken together, these results demonstrate that tau modulates motility in a motor-specific manner to direct intracellular transport, and suggests that dysregulation of tau might contribute to neurodegeneration by disrupting the balance of plus- and minus-end directed transport.


Assuntos
Dineínas/metabolismo , Cinesinas/metabolismo , Proteínas tau/metabolismo , Animais , Movimento Celular/fisiologia , Camundongos , Microtúbulos/metabolismo , Transporte Proteico/fisiologia
11.
Biophys J ; 113(7): 1551-1560, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28978447

RESUMO

The motor proteins kinesin and dynein transport organelles, mRNA, proteins, and signaling molecules along the microtubule cytoskeleton. In addition to serving as tracks for transport, the microtubule cytoskeleton directs intracellular trafficking by regulating the activity of motor proteins through the organization of the filament network, microtubule-associated proteins, and tubulin posttranslational modifications. However, it is not well understood how these factors influence motor motility, and in vitro assays and live cell observations often produce disparate results. To systematically examine the factors that contribute to cytoskeleton-based regulation of motor protein motility, we extracted intact microtubule networks from cells and tracked the motility of single fluorescently labeled motor proteins on these cytoskeletons. We find that tubulin acetylation alone does not directly affect kinesin-1 motility. However, acetylated microtubules are predominantly bundled, and bundling enhances kinesin run lengths and provides a greater number of available kinesin binding sites. The neuronal MAP tau is also not sensitive to tubulin acetylation, but enriches preferentially on highly curved regions of microtubules where it strongly inhibits kinesin motility. Taken together, these results suggest that the organization of the microtubule network is a key contributor to the regulation of motor-based transport.


Assuntos
Cinesinas/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Acetilação , Animais , Células COS , Chlorocebus aethiops , Escherichia coli , Transporte Proteico , Ratos , Proteínas Recombinantes/metabolismo , Proteínas tau/metabolismo
12.
Nat Commun ; 8: 15063, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28406181

RESUMO

Abnormal axonal transport is associated with neuronal disease. We identified a role for DHC-1, the C. elegans dynein heavy chain, in maintaining neuronal cargo distribution. Surprisingly, this does not involve dynein's role as a retrograde motor in cargo transport, hinging instead on its ability to inhibit microtubule (MT) dynamics. Neuronal MTs are highly static, yet the mechanisms and functional significance of this property are not well understood. In disease-mimicking dhc-1 alleles, excessive MT growth and collapse occur at the dendrite tip, resulting in the formation of aberrant MT loops. These unstable MTs act as cargo traps, leading to ectopic accumulations of cargo and reduced availability of cargo at normal locations. Our data suggest that an anchored dynein pool interacts with plus-end-out MTs to stabilize MTs and allow efficient retrograde transport. These results identify functional significance for neuronal MT stability and suggest a mechanism for cellular dysfunction in dynein-linked disease.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Dineínas do Citoplasma/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo , Animais , Animais Geneticamente Modificados , Transporte Axonal , Células COS , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Chlorocebus aethiops , Dineínas do Citoplasma/genética , Dendritos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Mutação , Imagem com Lapso de Tempo/métodos
13.
Methods Mol Biol ; 1486: 537-552, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27844443

RESUMO

Optical tweezers have been instrumental in uncovering the mechanisms motor proteins use to generate and react to force. While optical traps have primarily been applied to purified, in vitro systems, emerging methods enable measurements in living cells where the actively fluctuating, viscoelastic environment and varying refractive index complicate calibration of the instrument. Here, we describe techniques to calibrate optical traps in living cells using the forced response to sinusoidal oscillations and spontaneous fluctuations, and to measure the forces exerted by endogenous ensembles of kinesin and dynein motor proteins as they transport cargoes in the cell.


Assuntos
Microscopia/métodos , Proteínas Motores Moleculares/química , Pinças Ópticas , Óptica e Fotônica/métodos , Animais , Calibragem , Citoplasma , Elasticidade , Macrófagos/metabolismo , Camundongos , Viscosidade
14.
Methods Enzymol ; 540: 249-62, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24630111

RESUMO

Kinesin, dynein, and myosin transport intracellular cargoes including organelles, membrane-bound vesicles, and mRNA along the cytoskeleton. These motor proteins work collectively in teams to transport cargoes over long distances and navigate around obstacles in the cell. In addition, several types of motors often interact on the same cargo to allow bidirectional transport and switching between the actin and microtubule networks. To examine transport of native cargoes in a simplified in vitro system, techniques have been developed to isolate endogenous cargoes and reconstitute their motility. Isolated cargoes can be tracked and manipulated with high precision using total internal reflection fluorescence microscopy and optical trapping. Through use of native cargoes, we can examine vesicular transport in a minimal system while retaining endogenous motor stoichiometry and the biochemical and mechanical characteristics of both motor and cargo.


Assuntos
Dineínas/metabolismo , Cinesinas/metabolismo , Animais , Transporte Biológico , Encéfalo/metabolismo , Camundongos , Microscopia de Fluorescência/métodos , Microtúbulos/metabolismo , Pinças Ópticas
15.
J Biol Chem ; 288(39): 27812-24, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23960070

RESUMO

Cytoplasmic dynein is well characterized as an organelle motor, but dynein also acts to tether and stabilize dynamic microtubule plus-ends in vitro. Here we identify a novel and direct interaction between dynein and the 180-kDa isoform of the neural cell adhesion molecule (NCAM). Optical trapping experiments indicate that dynein bound to beads via the NCAM180 interaction domain can tether projecting microtubule plus-ends. Live cell assays indicate that the NCAM180-dependent recruitment of dynein to the cortex leads to the selective stabilization of microtubules projecting to NCAM180 patches at the cell periphery. The dynein-NCAM180 interaction also enhances cell-cell adhesion in heterologous cell assays. Dynein and NCAM180 co-precipitate from mouse brain extract and from synaptosomal fractions, consistent with an endogenous interaction in neurons. Thus, we examined microtubule dynamics and synaptic density in primary cortical neurons. We find that depletion of NCAM, inhibition of the dynein-NCAM180 interaction, or dampening of microtubule dynamics with low dose nocodazole all result in significantly decreased in synaptic density. Based on these observations, we propose a working model for the role of dynein at the synapse, in which the anchoring of the motor to the cortex via binding to an adhesion molecule mediates the tethering of dynamic microtubule plus-ends to potentiate synaptic stabilization.


Assuntos
Dineínas/química , Microtúbulos/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Animais , Células COS , Chlorocebus aethiops , Citoplasma/metabolismo , Dineínas do Citoplasma/química , Células HeLa , Humanos , Camundongos , Ligação Proteica , Sinaptossomos/metabolismo , Técnicas do Sistema de Duplo-Híbrido
16.
Curr Biol ; 22(24): R1053-5, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23257193

RESUMO

Teams of kinesin and dynein motors drive bidirectional transport of intracellular cargoes along the microtubule cytoskeleton. How do opposite-polarity motors interact to achieve targeted trafficking? A new study uses tools from synthetic biology to probe collective motor function.


Assuntos
Dineínas/metabolismo , Cinesinas/metabolismo , Transporte Biológico
17.
Proc Natl Acad Sci U S A ; 109(45): 18447-52, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23091040

RESUMO

Many cellular cargoes move bidirectionally along microtubules, driven by teams of plus- and minus-end-directed motor proteins. To probe the forces exerted on cargoes during intracellular transport, we examined latex beads phagocytosed into living mammalian macrophages. These latex bead compartments (LBCs) are encased in membrane and transported along the cytoskeleton by a complement of endogenous kinesin-1, kinesin-2, and dynein motors. The size and refractive index of LBCs makes them well-suited for manipulation with an optical trap. We developed methods that provide in situ calibration of the optical trap in the complex cellular environment, taking into account any variations among cargoes and local viscoelastic properties of the cytoplasm. We found that centrally and peripherally directed forces exerted on LBCs are of similar magnitude, with maximum forces of ~20 pN. During force events greater than 10 pN, we often observe 8-nm steps in both directions, indicating that the stepping of multiple motors is correlated. These observations suggest bidirectional transport of LBCs is driven by opposing teams of stably bound motors that operate near force balance.


Assuntos
Microtúbulos/metabolismo , Proteínas Motores Moleculares/metabolismo , Animais , Transporte Biológico , Fenômenos Biomecânicos/fisiologia , Calibragem , Compartimento Celular , Linhagem Celular , Movimento Celular , Sobrevivência Celular , Microambiente Celular , Dineínas/metabolismo , Elasticidade , Cinesinas/metabolismo , Látex , Camundongos , Microesferas , Pinças Ópticas , Fagocitose , Fagossomos/metabolismo , Ligação Proteica , Viscosidade
18.
Biophys J ; 103(1): 48-58, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22828331

RESUMO

Intracellular trafficking of organelles often involves cytoskeletal track switching. Organelles such as melanosomes are transported by multiple motors including kinesin-2, dynein, and myosin-V, which drive switching between microtubules and actin filaments during dispersion and aggregation. Here, we used optical trapping to determine the unitary and ensemble forces of kinesin-2, and to reconstitute cargo switching at cytoskeletal intersections in a minimal system with kinesin-2 and myosin-V motors bound to beads. Single kinesin-2 motors exerted forces up to ∼5 pN, similar to kinesin-1. However, kinesin-2 motors were more likely to detach at submaximal forces, and the duration of force maintenance was short as compared to kinesin-1. In multimotor assays, force increased with kinesin-2 density but was not affected by the presence of myosin-V. In crossed filament assays, switching frequencies of motor-bound beads were dependent on the starting track. At equal average forces, beads tended to switch from microtubules onto overlying actin filaments consistent with the relatively faster detachment of kinesin-2 at near-maximal forces. Thus, in addition to relative force, switching probability at filament intersections is determined by the dynamics of motor-filament interaction, such as the quick detachment of kinesin-2 under load. This may enable fine-tuning of filament switching in the cell.


Assuntos
Citoesqueleto de Actina/fisiologia , Cinesinas/fisiologia , Microtúbulos/fisiologia , Proteínas de Xenopus/fisiologia , Citoesqueleto de Actina/química , Animais , Cinesinas/química , Microscopia de Fluorescência , Simulação de Dinâmica Molecular , Miosina Tipo V/química , Miosina Tipo V/fisiologia , Conformação Proteica , Coelhos , Xenopus , Proteínas de Xenopus/química
19.
Cell ; 149(4): 950-950.e1, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22579292
20.
Curr Biol ; 22(7): 632-7, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22445300

RESUMO

Microtubules undergo alternating periods of growth and shortening, known as dynamic instability. These dynamics allow microtubule plus ends to explore cellular space. The "search and capture" model posits that selective anchoring of microtubule plus ends at the cell cortex may contribute to cell polarization, spindle orientation, or targeted trafficking to specific cellular domains. Whereas cytoplasmic dynein is primarily known as a minus-end-directed microtubule motor for organelle transport, cortically localized dynein has been shown to capture and tether microtubules at the cell periphery in both dividing and interphase cells. To explore the mechanism involved, we developed a minimal in vitro system, with dynein-bound beads positioned near microtubule plus ends using an optical trap. Dynein induced a significant reduction in the lateral diffusion of microtubule ends, distinct from the effects of other microtubule-associated proteins such as kinesin-1 and EB1. In assays with dynamic microtubules, dynein delayed barrier-induced catastrophe of microtubules. This effect was ATP dependent, indicating that dynein motor activity was required. Computational modeling suggests that dynein delays catastrophe by exerting tension on individual protofilaments, leading to microtubule stabilization. Thus, dynein-mediated capture and tethering of microtubules at the cortex can lead to enhanced stability of dynamic plus ends.


Assuntos
Dineínas/metabolismo , Microtúbulos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Transporte Biológico , Bovinos , Biologia Computacional , Citoplasma/metabolismo , Escherichia coli/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Proteínas Recombinantes/metabolismo , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...