Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(11): e1011719, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37939149

RESUMO

Clinical studies report that viral infections promote acute or chronic bacterial infections at multiple host sites. These viral-bacterial co-infections are widely linked to more severe clinical outcomes. In experimental models in vitro and in vivo, virus-induced interferon responses can augment host susceptibility to secondary bacterial infection. Here, we used a cell-based screen to assess 389 interferon-stimulated genes (ISGs) for their ability to induce chronic Pseudomonas aeruginosa infection. We identified and validated five ISGs that were sufficient to promote bacterial infection. Furthermore, we dissected the mechanism of action of hexokinase 2 (HK2), a gene involved in the induction of aerobic glycolysis, commonly known as the Warburg effect. We report that HK2 upregulation mediates the induction of Warburg effect and secretion of L-lactate, which enhances chronic P. aeruginosa infection. These findings elucidate how the antiviral immune response renders the host susceptible to secondary bacterial infection, revealing potential strategies for viral-bacterial co-infection treatment.


Assuntos
Infecções Bacterianas , Coinfecção , Viroses , Vírus , Humanos , Interferons/metabolismo , Vírus/metabolismo
2.
Membranes (Basel) ; 13(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37755174

RESUMO

This article reviews the role of outer membrane vesicles (OMVs) in mediating the interaction between Gram-negative bacteria and their human hosts. OMVs are produced by a diverse range of Gram-negative bacteria during infection and play a critical role in facilitating host-pathogen interactions without requiring direct cell-to-cell contact. This article describes the mechanisms by which OMVs are formed and subsequently interact with host cells, leading to the transport of microbial protein virulence factors and short interfering RNAs (sRNA) to their host targets, exerting their immunomodulatory effects by targeting specific host signaling pathways. Specifically, this review highlights mechanisms by which OMVs facilitate chronic infection through epigenetic modification of the host immune response. Finally, this review identifies critical knowledge gaps in the field and offers potential avenues for future OMV research, specifically regarding rigor and reproducibility in OMV isolation and characterization methods.

3.
Cell Rep ; 42(3): 112270, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36930643

RESUMO

The cystic fibrosis (CF) respiratory tract harbors pathogenic bacteria that cause life-threatening chronic infections. Of these, Pseudomonas aeruginosa becomes increasingly dominant with age and is associated with worsening lung function and declining microbial diversity. We aimed to understand why P. aeruginosa dominates over other pathogens to cause worsening disease. Here, we show that P. aeruginosa responds to dynamic changes in iron concentration, often associated with viral infection and pulmonary exacerbations, to become more competitive via expression of the TseT toxic effector. However, this behavior can be therapeutically targeted using the iron chelator deferiprone to block TseT expression and competition. Overall, we find that iron concentration and TseT expression significantly correlate with microbial diversity in the respiratory tract of people with CF. These findings improve our understanding of how P. aeruginosa becomes increasingly dominant with age in people with CF and provide a therapeutically targetable pathway to help prevent this shift.


Assuntos
Fibrose Cística , Ferro , Humanos , Ferro/metabolismo , Pseudomonas aeruginosa/metabolismo , Disponibilidade Biológica , Sistema Respiratório , Fibrose Cística/microbiologia
4.
Cell Rep ; 34(4): 108672, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33503419

RESUMO

Extracellular vesicles (EVs) are increasingly appreciated as a mechanism of communication among cells that contribute to many physiological processes. Although EVs can promote either antiviral or proviral effects during viral infections, the role of EVs in virus-associated polymicrobial infections remains poorly defined. We report that EVs secreted from airway epithelial cells during respiratory viral infection promote secondary bacterial growth, including biofilm biogenesis, by Pseudomonas aeruginosa. Respiratory syncytial virus (RSV) increases the release of the host iron-binding protein transferrin on the extravesicular face of EVs, which interact with P. aeruginosa biofilms to transfer the nutrient iron and promote bacterial biofilm growth. Vesicular delivery of iron by transferrin more efficiently promotes P. aeruginosa biofilm growth than soluble holo-transferrin delivered alone. Our findings indicate that EVs are a nutrient source for secondary bacterial infections in the airways during viral infection and offer evidence of transkingdom communication in the setting of polymicrobial infections.


Assuntos
Coinfecção/microbiologia , Vesículas Extracelulares/metabolismo , Nutrientes/metabolismo , Pseudomonas aeruginosa/metabolismo , Vírus Sinciciais Respiratórios/patogenicidade , Humanos
5.
Immunity ; 53(2): 245-247, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32814024

RESUMO

Type I and III interferons (IFNs) drive effective antiviral functions but differentially affect tissue homeostasis. Using mouse models of severe inflammation, Broggi et al. and Major et al. report in Science that type III IFNs disrupt epithelial cell proliferation and differentiation in the lung.


Assuntos
Antivirais , Interferons , Animais , Pulmão , Camundongos , Interferon lambda
6.
Immunity ; 51(3): 451-464.e6, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31471108

RESUMO

Type I and III interferons (IFNs) activate similar downstream signaling cascades, but unlike type I IFNs, type III IFNs (IFNλ) do not elicit strong inflammatory responses in vivo. Here, we examined the molecular mechanisms underlying this disparity. Type I and III IFNs displayed kinetic differences in expression of IFN-stimulated genes and proinflammatory responses, with type I IFNs preferentially stimulating expression of the transcription factor IRF1. Type III IFNs failed to induce IRF1 expression because of low IFNλ receptor abundance and insufficient STAT1 activation on epithelial cells and thus did not activate the IRF1 proinflammatory gene program. Rather, IFNλ stimulation preferentially induced factors implicated in tissue repair. Our findings suggest that IFN receptor compartmentalization and abundance confer a spatiotemporal division of labor where type III IFNs control viral spread at the site of the infection while restricting tissue damage; the transient induction of inflammatory responses by type I IFNs recruits immune effectors to promote protective immunity.


Assuntos
Fator Regulador 1 de Interferon/imunologia , Interferon Tipo I/imunologia , Interferons/imunologia , Animais , Linhagem Celular , Células Epiteliais/imunologia , Humanos , Inflamação/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT1/imunologia , Interferon lambda
7.
mSphere ; 2(4)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28875177

RESUMO

Clostridium perfringens enterotoxin (CPE) causes the diarrhea associated with a common bacterial food poisoning and many antibiotic-associated diarrhea cases. The severity of some CPE-mediated disease cases warrants the development of potential therapeutics. A previous study showed that the presence of mepacrine inhibited CPE-induced electrophysiology effects in artificial lipid bilayers lacking CPE receptors. However, that study did not assess whether mepacrine inactivates CPE or, instead, inhibits a step in CPE action. Furthermore, CPE action in host cells is complex, involving the toxin binding to receptors, receptor-bound CPE oligomerizing into a prepore on the membrane surface, and ß-hairpins in the CPE prepore inserting into the membrane to form a pore that induces cell death. Therefore, the current study evaluated the ability of mepacrine to protect cells from CPE. This drug was found to reduce CPE-induced cytotoxicity in Caco-2 cells. This protection did not involve mepacrine inactivation of CPE, indicating that mepacrine affects one or more steps in CPE action. Western blotting then demonstrated that mepacrine decreases CPE pore levels in Caco-2 cells. This mepacrine-induced reduction in CPE pore levels did not involve CPE binding inhibition but rather an increase in CPE monomer dissociation due to mepacrine interactions with Caco-2 membranes. In addition, mepacrine was also shown to inhibit CPE pores when already present in Caco-2 cells. These in vitro studies, which identified two mepacrine-sensitive steps in CPE-induced cytotoxicity, add support to further testing of the therapeutic potential of mepacrine against CPE-mediated disease. IMPORTANCEClostridium perfringens enterotoxin (CPE) causes the gastrointestinal (GI) symptoms of a common bacterial food poisoning and several nonfoodborne human GI diseases. A previous study showed that, via an undetermined mechanism, the presence of mepacrine blocks CPE-induced electrophysiologic activity in artificial membranes. The current study now demonstrates that mepacrine also inhibits CPE-induced cytotoxicity in human enterocyte-like Caco-2 cells and that mepacrine does not directly inactivate CPE. Instead, this drug reduces both CPE pore formation and CPE pore activity in Caco-2 cells. These results suggest mepacrine as a therapeutic candidate for treating CPE-mediated GI diseases.

8.
Cell Host Microbe ; 20(5): 606-617, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27923704

RESUMO

Signaling through the IL-17 receptor (IL-17R) is required to prevent oropharyngeal candidiasis (OPC) in mice and humans. However, the IL-17-responsive cell type(s) that mediate protection are unknown. Using radiation chimeras, we were able to rule out a requirement for IL-17RA in the hematopoietic compartment. We saw remarkable concordance of IL-17-controlled gene expression in C. albicans-infected human oral epithelial cells (OECs) and in tongue tissue from mice with OPC. To interrogate the role of the IL-17R in OECs, we generated mice with conditional deletion of IL-17RA in superficial oral and esophageal epithelial cells (Il17raΔK13). Following oral Candida infection, Il17raΔK13 mice exhibited fungal loads and weight loss indistinguishable from Il17ra-/- mice. Susceptibility in Il17raΔK13 mice correlated with expression of the antimicrobial peptide ß-defensin 3 (BD3, Defb3). Consistently, Defb3-/- mice were susceptible to OPC. Thus, OECs dominantly control IL-17R-dependent responses to OPC through regulation of BD3 expression.


Assuntos
Candida/imunologia , Candidíase Bucal/imunologia , Células Epiteliais/imunologia , Mucosa Bucal/imunologia , Receptores de Interleucina-17/metabolismo , Transdução de Sinais , beta-Defensinas/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Camundongos Knockout , Receptores de Interleucina-17/deficiência
9.
mBio ; 7(6)2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27965452

RESUMO

Clostridium perfringens enterotoxin (CPE) binds to claudin receptors, e.g., claudin-4, and then forms a pore that triggers cell death. Pure cultures of host cells that do not express claudin receptors, e.g., fibroblasts, are unaffected by pathophysiologically relevant CPE concentrations in vitro However, both CPE-insensitive and CPE-sensitive host cells are present in vivo Therefore, this study tested whether CPE treatment might affect fibroblasts when cocultured with CPE-sensitive claudin-4 fibroblast transfectants or Caco-2 cells. Under these conditions, immunofluorescence microscopy detected increased death of fibroblasts. This cytotoxic effect involved release of a toxic factor from the dying CPE-sensitive cells, since it could be reproduced using culture supernatants from CPE-treated sensitive cells. Supernatants from CPE-treated sensitive cells, particularly Caco-2 cells, were found to contain high levels of membrane vesicles, often containing a CPE species. However, most cytotoxic activity remained in those supernatants even after membrane vesicle depletion, and CPE was not detected in fibroblasts treated with supernatants from CPE-treated sensitive cells. Instead, characterization studies suggest that a major cytotoxic factor present in supernatants from CPE-treated sensitive cells may be a 10- to 30-kDa host serine protease or require the action of that host serine protease. Induction of caspase-3-mediated apoptosis was found to be important for triggering release of the cytotoxic factor(s) from CPE-treated sensitive host cells. Furthermore, the cytotoxic factor(s) in these supernatants was shown to induce a caspase-3-mediated killing of fibroblasts. This bystander killing effect due to release of cytotoxic factors from CPE-treated sensitive cells could contribute to CPE-mediated disease. IMPORTANCE: In susceptible host cells, Clostridium perfringens enterotoxin (CPE) binds to claudin receptors and then forms pores that result in cell death. Using cocultures of CPE receptor-expressing sensitive cells mixed with CPE-insensitive cells lacking receptors for this toxin, the current study determined that CPE-treated sensitive cells release soluble cytotoxic factors, one of which may be a 10- to 30-kDa serine protease, to cause apoptotic death of cells that are themselves CPE insensitive. These findings suggest a novel bystander killing mechanism by which a pore-forming toxin may extend its damage to affect cells not directly responsive to that toxin. If confirmed to occur in vivo by future studies, this bystander killing effect may have significance during CPE-mediated disease and could impact the translational use of CPE for purposes such as cancer therapy.


Assuntos
Efeito Espectador , Enterotoxinas/metabolismo , Enterotoxinas/toxicidade , Fibroblastos/fisiologia , Animais , Apoptose , Células CACO-2 , Caspase 3/metabolismo , Morte Celular , Claudina-4/genética , Clostridium perfringens/genética , Técnicas de Cocultura , Meios de Cultura/química , Enterotoxinas/genética , Fibroblastos/citologia , Humanos , Ratos , Serina Proteases/isolamento & purificação , Serina Proteases/metabolismo , Transfecção
10.
J Virol ; 90(9): 4258-4261, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26865718

RESUMO

Respiratory virus infections are common but generally self-limiting infections in healthy individuals. Although early clinical studies reported low detection rates, the development of molecular diagnostic techniques by PCR has led to an increased recognition that respiratory virus infections are associated with morbidity and acute exacerbations of chronic lung diseases, such as cystic fibrosis (CF). The airway epithelium is the first barrier encountered by respiratory viruses following inhalation and the primary site of respiratory viral replication. Here, we describe how the airway epithelial response to respiratory viral infections contributes to disease progression in patients with CF and other chronic lung diseases, including the role respiratory viral infections play in bacterial acquisition in the CF patient lung.


Assuntos
Fibrose Cística/complicações , Infecções Oportunistas/etiologia , Infecções do Sistema Genital/etiologia , Mucosa Respiratória/virologia , Viroses/etiologia , Animais , Infecções Bacterianas/etiologia , Infecções Bacterianas/metabolismo , Infecções Bacterianas/patologia , Doença Crônica , Coinfecção , Progressão da Doença , Humanos , Pneumopatias/complicações , Infecções Oportunistas/metabolismo , Infecções Oportunistas/patologia , Infecções do Sistema Genital/metabolismo , Infecções do Sistema Genital/patologia , Viroses/metabolismo , Viroses/patologia
11.
Infect Immun ; 84(5): 1301-1311, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26883591

RESUMO

Although recent studies in mice have shown that components of B cell and humoral immunity can modulate the immune responses against Mycobacterium tuberculosis, the roles of these components in human and nonhuman primate infections are unknown. The cynomolgus macaque (Macaca fascicularis) model of M. tuberculosis infection closely mirrors the infection outcomes and pathology in human tuberculosis (TB). The present study used rituximab, an anti-CD20 antibody, to deplete B cells in M. tuberculosis-infected macaques to examine the contribution of B cells and humoral immunity to the control of TB in nonhuman primates during the acute phase of infection. While there was no difference in the overall pathology, disease profession, and clinical outcome between the rituximab-treated and untreated macaques in acute infection, analyzing individual granulomas revealed that B cell depletion resulted in altered local T cell and cytokine responses, increased bacterial burden, and lower levels of inflammation. There were elevated frequencies of T cells producing interleukin-2 (IL-2), IL-10, and IL-17 and decreased IL-6 and IL-10 levels within granulomas from B cell-depleted animals. The effects of B cell depletion varied among granulomas in an individual animal, as well as among animals, underscoring the previously reported heterogeneity of local immunologic characteristics of tuberculous granulomas in nonhuman primates. Taken together, our data clearly showed that B cells can modulate the local granulomatous response in M. tuberculosis-infected macaques during acute infection. The impact of these alterations on disease progression and outcome in the chronic phase remains to be determined.


Assuntos
Linfócitos B/imunologia , Macaca fascicularis , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Tuberculose/patologia , Animais , Carga Bacteriana , Modelos Animais de Doenças , Granuloma/microbiologia , Granuloma/patologia , Fatores Imunológicos/administração & dosagem , Inflamação/patologia , Procedimentos de Redução de Leucócitos , Rituximab/administração & dosagem , Linfócitos T/imunologia
12.
Proc Natl Acad Sci U S A ; 113(6): 1642-7, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26729873

RESUMO

Clinical observations link respiratory virus infection and Pseudomonas aeruginosa colonization in chronic lung disease, including cystic fibrosis (CF) and chronic obstructive pulmonary disease. The development of P. aeruginosa into highly antibiotic-resistant biofilm communities promotes airway colonization and accounts for disease progression in patients. Although clinical studies show a strong correlation between CF patients' acquisition of chronic P. aeruginosa infections and respiratory virus infection, little is known about the mechanism by which chronic P. aeruginosa infections are initiated in the host. Using a coculture model to study the formation of bacterial biofilm formation associated with the airway epithelium, we show that respiratory viral infections and the induction of antiviral interferons promote robust secondary P. aeruginosa biofilm formation. We report that the induction of antiviral IFN signaling in response to respiratory syncytial virus (RSV) infection induces bacterial biofilm formation through a mechanism of dysregulated iron homeostasis of the airway epithelium. Moreover, increased apical release of the host iron-binding protein transferrin during RSV infection promotes P. aeruginosa biofilm development in vitro and in vivo. Thus, nutritional immunity pathways that are disrupted during respiratory viral infection create an environment that favors secondary bacterial infection and may provide previously unidentified targets to combat bacterial biofilm formation.


Assuntos
Biofilmes/crescimento & desenvolvimento , Imunidade , Fenômenos Fisiológicos da Nutrição , Pseudomonas aeruginosa/fisiologia , Infecções por Vírus Respiratório Sincicial/patologia , Vírus Sinciciais Respiratórios/fisiologia , Animais , Antivirais/farmacologia , Brônquios/patologia , Líquido da Lavagem Broncoalveolar , Fibrose Cística/microbiologia , Fibrose Cística/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Células Epiteliais/virologia , Homeostase/efeitos dos fármacos , Humanos , Interferon beta/farmacologia , Ferro/farmacologia , Camundongos , Interações Microbianas/efeitos dos fármacos , Modelos Biológicos , Pseudomonas aeruginosa/efeitos dos fármacos , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transferrina/metabolismo
13.
Am J Physiol Cell Physiol ; 306(3): C187-97, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24133062

RESUMO

Due to evolutionary pressure, there are many complex interactions at the interface between pathogens and eukaryotic host cells wherein host cells attempt to clear invading microorganisms and pathogens counter these mechanisms to colonize and invade host tissues. One striking observation from studies focused on this interface is that pathogens have multiple mechanisms to modulate and disrupt normal cellular physiology to establish replication niches and avoid clearance. The precision by which pathogens exert their effects on host cells makes them excellent tools to answer questions about cell physiology of eukaryotic cells. Furthermore, an understanding of these mechanisms at the host-pathogen interface will benefit our understanding of how pathogens cause disease. In this review, we describe a few examples of how pathogens disrupt normal cellular physiology and protein trafficking at epithelial cell barriers to underscore how pathogens modulate cellular processes to cause disease and how this knowledge has been utilized to learn about cellular physiology.


Assuntos
Bactérias , Epitélio/metabolismo , Epitélio/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Animais , Bactérias/citologia , Bactérias/imunologia , Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Endocitose/imunologia , Epitélio/imunologia , Humanos , Evasão da Resposta Imune , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...