Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 181: 114098, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448107

RESUMO

Quantitative changes at different length scales (molecular, microscopic, and macroscopic levels) during cooking were evaluated to better understand the cooking behavior of common beans. The microstructural evolution of presoaked fresh and aged red kidney beans during cooking at 95 °C was quantified using light microscopy coupled with image analysis. These data were related to macroscopic properties, being hardness and volume changes representing texture and swelling of the beans during cooking. Microstructural properties included the cell area (Acell), the fraction of intercellular spaces (%Ais), and the fraction of starch area within the cells (%As/c), reflecting respectively cell expansion, cell separation, and starch swelling. A strong linear correlation between hardness and %Ais (r = -0.886, p = 0.07), along with a significant relative change in %Ais (∼5 times), suggests that softening is predominantly due to cell separation rather than cell expansion. Regarding volume changes, substantial cell expansion (Acell increased by ∼1.5 times) during the initial 30 min of cooking was greatly associated with the increase in the cotyledon volume, while the significance of cell separation became more prominent during the later stages of cooking. Furthermore, we found that the seed coat, rather than the cotyledon, played a major role in the swelling of whole beans, which became less pronounced after aging. The macroscopic properties did not correlate with %As/c. However, the evolution of %As/c conveyed information on the swelling of the starch granules during cooking. During the initial phase, the starch granule swelling mainly filled the cells, while during the later phase, the further swelling was confined by the cell wall. This study provides strong microscopic evidence supporting the direct involvement of the cell wall/ middle lamella network in microstructural changes during cooking as affected by aging, which is in line with the results of molecular changes.


Assuntos
Phaseolus , Verduras , Culinária , Amido
2.
Food Chem ; 445: 138644, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354638

RESUMO

Vegetables are frequently processed before consumption. However, vegetable functionalization continues beyond ingestion as the human digestive tract exposes vegetable products to various conditions (e.g. elevated temperature, pH alterations, enzymes, electrolytes, mechanical disintegration) which can affect the stability of micronutrients and phytochemicals. Besides the extent to which these compounds withstand the challenges posed by digestive conditions, it is equally important to consider their accessibility for potential absorption by the body. Therefore, this study investigated the impact of static in vitro digestion on the stability (i.e. concentration) and bioaccessibility of vitamin C, vitamin K1, glucosinolates, S-alk(en)yl-l-cysteine sulfoxides (ACSOs) and carotenoids in Brussels sprouts (Brassica oleracea var. gemmifera) and leek (Allium ampeloprasum var. porrum). Water-soluble compounds, glucosinolates and ACSOs, remained stable during digestion while vitamin C decreased by >48%. However, all water-soluble compounds were completely bioaccessible. Lipid-soluble compounds were also stable during digestion but were only bioaccessible for 26-81%.


Assuntos
Brassica , Cebolas , Humanos , Cebolas/química , Micronutrientes , Glucosinolatos/análise , Brassica/química , Verduras , Ácido Ascórbico , Vitaminas , Digestão , Água , Compostos Fitoquímicos
3.
Food Funct ; 15(2): 591-607, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38098462

RESUMO

In the context of adequately feeding the rising older population, lentils have an important potential as sources of (plant-based) protein as well as slowly digestible bio-encapsulated starch and fibre. This study evaluated in vitro digestion of protein and starch in lentils under conditions representing the gastrointestinal tract of older adults. Both static and semi-dynamic simulations were applied to analyze the effect of specific gastrointestinal conditions (healthy versus older adult) on macronutrient digestion patterns. Gastric proteolysis was strongly dependent on applied gastric pH (gradient), leading to a lower extent of protein hydrolysis for simulations relevant for older adults. Fewer and smaller (lower degree of polymerization, DP) bioaccessible peptides were formed during gastric proteolysis under older adult compared to healthy adult conditions. These differences, developed during the in vitro gastric phase, were compensated during small intestinal digestion, yielding similar final proteolysis levels regardless of the applied simulation conditions. In contrast, in the presence of saliva, amylolysis was generally accelerated under older adult conditions. Moreover, the current work highlighted the importance of considering saliva (or salivary amylase) incorporation in simulations where the applied gastric pH (gradient) allows salivary amylase activity. Under both healthy and older adult conditions, in vitro starch hydrolysis bio-encapsulated in cotyledon cells of cooked lentils was attenuated, compared to a white bread reference.


Assuntos
Lens (Planta) , Amido , Amido/metabolismo , Proteólise , Lens (Planta)/metabolismo , Digestão , Amilases/metabolismo
4.
Food Res Int ; 175: 113764, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129057

RESUMO

Vegetable processing often consists of multiple processing steps. Research mostly focused on the impact of individual processing steps on individual health-related compounds. However, there is a need for more holistic approaches to understand the overall impact of the processing chain on the health potential of vegetables. Therefore, this work studied the impact of pretreatment (relatively intact versus pureed vegetable systems), pasteurization and subsequent refrigerated storage (kinetic evaluation) on multiple health-related compounds (vitamin C, vitamin K1, carotenoids, glucosinolates and S-alk(en)yl-L-cysteine sulfoxides (ACSOs)) in Brussels sprouts and leek. It could be shown that differences introduced by different types of pretreatment were not nullified during pasteurization and refrigerated storage. Clearly, enzymatic conversions controlled during pretreatment resulted in different health-related compound profiles still observable after pasteurization. Moreover, about -42% and -100% relative concentration differences of ACSOs and dehydroascorbic acid, respectively, were detected immediately after pasteurization, while glucosinolates concentrations decreased by about 47% during refrigerated storage. All other compounds were stable during pasteurization and refrigerated storage.


Assuntos
Brassica , Cebolas , Glucosinolatos , Brassica/química , Ácido Ascórbico/análise , Pasteurização , Verduras
5.
Food Res Int ; 169: 112864, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254313

RESUMO

Processing can affect (bio)chemical conversions in vegetables and can act on their volatile properties accordingly. In this study, the integrated effect of pretreatment and pasteurization on the volatile profile of leek and Brussels sprouts and the change of this profile upon refrigerated storage were investigated. Pretreatments were specifically selected to steer biochemical reactivities to different extents. Volatile profiles were analyzed by headspace-solid phase microextraction-gas chromatography-mass spectrometry. For both vegetables, it was observed that different pretreatments prior to a pasteurization step led to diverse volatile profiles. The differences in volatile profiles observed in the different samples were presumably attributed to the different degrees of enzymatic conversions, further conversions of enzymatically formed products and thermally induced reactivities. Interestingly, the observed initial relative differences between volatile profiles of differently pretreated pasteurized samples were still observed after a refrigerated storage of 4 weeks at 4 °C. In conclusion, refrigerated storage only limitedly affected the resulting volatile profile.


Assuntos
Brassica , Cebolas , Brassica/química , Verduras/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Pasteurização
6.
Food Res Int ; 168: 112785, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37120232

RESUMO

The digestion of lipids in the human body has several health and nutritional implications. Lipid digestion is an interfacial phenomenon meaning that water-soluble lipases need to first adsorb to the oil-water interface before enzymatic conversions can start. The digestion of lipids mainly occurs on colloidal structures dispersed in water, such as oil-in-water (o/w) emulsions, which can be designed during food formulation/processing or structured during digestion. From a food design perspective, different in vitro studies have demonstrated that the kinetics of lipid digestion can be influenced by emulsion properties. However, most of these studies have been performed with pancreatic enzymes to simulate lipolysis in the small intestine. Only few studies have dealt with lipid digestion in the gastric phase and its subsequent impact on intestinal lipolysis. In this aspect, this review compiles information on the physiological aspects of gastric lipid digestion. In addition, it deals with colloidal and interfacial aspects starting from emulsion design factors and how they evolve during in vitro digestion. Finally, molecular mechanisms describing gastric lipolysis are discussed.


Assuntos
Lipídeos , Lipólise , Humanos , Emulsões/química , Lipídeos/química , Digestão , Água/química
7.
Food Res Int ; 165: 112471, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869484

RESUMO

The rate liming step of bean softening during cooking was evaluated. Red kidney beans (fresh/non-aged and aged) were cooked at different temperatures (70-95 °C) and their texture evolution established. Softening of beans (loss of hard texture) with cooking and increasing cooking temperature was evident at ≥ 80 °C more so for non-aged than aged beans, evidencing hard-to-cook development during storage. Beans at each cooking time and temperature were subsequently classified into narrow texture ranges and bean cotyledons in the most frequent texture class evaluated for the extent of starch gelatinization, protein denaturation and pectin solubilization. During cooking, starch gelatinization was shown to precede pectin solubilization and protein denaturation, with these reactions progressing faster and to a greater extent with increasing cooking temperature. At 95 °C for instance (practical bean processing temperature), complete starch gelatinization and protein denaturation is attained earlier (∼10 and 60 min cooking, respectively and at comparable time moments for both non-aged and aged beans) than plateau bean texture (∼120 and 270 min for non-aged and aged beans)/plateau pectin solubilization. The extent of pectin solubilization in the cotyledons was consequently most correlated (negatively, r = 0.95) with and plays the most significant role (P < 0.0001) in directing the relative texture of beans during cooking. Ageing was shown to significantly retard bean softening. Protein denaturation plays a less significant role (P = 0.007) while the contribution of starch gelatinization is insignificant (P = 0.181). Thermo-solubilization of pectin in bean cotyledons is therefore the rate limiting step of bean softening towards attaining a palatable texture during cooking.


Assuntos
Pectinas , Verduras , Desnaturação Proteica , Amido
8.
Anim Nutr ; 12: 151-158, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36683878

RESUMO

In vitro digestion studies demonstrate large potential to gain more and quicker insights into the underlying mechanisms of feed additives, allowing the optimization of feed design. Unfortunately, current in vitro digestion models relevant for broiler chickens lack sufficient description in terms of protocols and standardisation used. Furthermore, no distinction is made between the different life phases of these animals (starter, grower, and finisher). Hence, our research aimed to establish adapted in vitro digestion conditions, corresponding to the 3 life phases in broilers, with specific focus on lipid digestion. The effect of 3 different bile salt concentrations of 2, 10, and 20 mM, and 3 different lipase activities of 5, 20, and 100 U/mL, on in vitro lipid digestion kinetics were evaluated using a full factorial design. These values were selected to represent starter, grower, and finisher birds, respectively. Our findings showed that the extent of lipid digestion was mainly influenced by lipase activity. The rate of lipid digestion was affected by an interplay between bile salt concentration and lipase activity, due to possible lipase inhibition at certain bile salt concentrations. Overall, this work resulted in 3 in vitro lipid digestion models representative for starter, grower, and finisher birds. In conclusion, this research showed the impact of adapted in vitro digestion conditions on lipid digestion kinetics and thus the need for these conditions relevant for each life phase of broilers.

9.
Foods ; 11(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36141018

RESUMO

Pulsed electric fields (PEF) at low field strength is considered a non-thermal technique allowing membrane permeabilization in plant-based tissue, hence possibly impacting biochemical conversions and the concomitant volatile profile. Detailed studies on the impact of PEF at low field strength on biochemical conversions in plant-based matrices are scarce but urgently needed to provide the necessary scientific basis allowing to open a potential promising field of applications. As a first objective, the effect of PEF and other treatments that aim to steer biochemical conversions on the volatile profile of Brussels sprouts was compared in this study. As a second objective, the effect of varying PEF conditions on the volatile profile of Brussels sprouts was elucidated. Volatile fingerprinting was used to deduce whether and which (bio)chemical reactions had occurred. Surprisingly, PEF at 1.01 kV/cm and 2.7 kJ/kg prior to heating was assumed not to have caused significant membrane permeabilization since similar volatiles were observed in the case of only heating, as opposed to mixing. A PEF treatment with an electrical field strength of 3.00 kV/cm led to a significantly higher formation of certain enzymatic reaction products, being more pronounced when combined with an energy input of 27.7 kJ/kg, implying that these PEF conditions could induce substantial membrane permeabilization. The results of this study can be utilized to steer enzymatic conversions towards an intended volatile profile of Brussels sprouts by applying PEF.

10.
Food Res Int ; 157: 111377, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761635

RESUMO

Storage stability is an essential consideration for minimizing the deteriorative quality changes in foods post-processing. This study, for the first, time aimed to gain insight into the storage stability of quick-cooking 'convenient' dehydrated beans (Phaseolus vulgaris L.) using the glass transition (Tg) concept. Quick-cooking dehydrated beans were prepared by hydrothermal treatment of fresh beans followed by air-drying and are rehydrated prior to use. The impact of storage temperatures (25, 28, 35 and 42 °C) on the rehydration indices (rate constant and extent) and quality characteristics (colour, texture and volatile profile) of the beans were studied. The results indicate a decrease in the rehydration rate constants with increasing storage temperatures and duration. The rehydration ability also significantly decreased with increased storage duration (>28 °C) suggesting a strong inverse link with hardness. Although there was no overall colour change with storage, the formation of new volatiles associated with non-enzymatic chemical reactions occurred at elevated temperatures (28-42 °C). Identification of the critical water contents based on the Tg-moisture relation and the moisture sorption isotherm revealed that dehydrated beans of 10 % moisture content stored below 28 °C are in a glassy state. Overall, the quality characteristics are significantly influenced by storage and the utilization of the glass transition concept allows for identifying suitable storage conditions.


Assuntos
Phaseolus , Vitrificação , Culinária/métodos , Hidratação , Dureza , Phaseolus/química
11.
Food Res Int ; 155: 111033, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35400425

RESUMO

In the current study, the effect of different particle size reduction techniques, namely high-pressure homogenization (HPH) and cryogenic ball milling (CBM), on the microstructural and texturizing properties of the tomato acid-unextractable fraction (AcUF) in suspension was studied. Partial pectin depletion was performed by nitric acid pectin extraction on the alcohol-insoluble residue. In the absence of the aforementioned mechanical treatments, the partially pectin-depleted material, i.e., the AcUF, showed a cellular morphology and a high texturizing potential. By short-time CBM in dry-state, the AcUF was extensively fractured and clumped, resulting in a collapsed structure with negligible texturizing potential and low water binding capacity. In contrast, HPH could disrupt the cell wall network (destroying the cellular morphology) resulting in a continuum of interacting material having very similar texturizing potential and a slightly higher water binding capacity than the AcUF before HPH. Furthermore, the potential of HPH to (re)functionalize the collapsed cryogenic ball milled AcUF by its shear-induced disruption was shown. Indeed, the debris-like cell wall remnants could to some extent be reopened by HPH, which resulted in a partial recovery of the original texturizing potential and an improved water binding capacity. However, the potential of HPH at 20 MPa to revert the detrimental effect of CBM decreased with increasing CBM treatment time.


Assuntos
Pectinas , Solanum lycopersicum , Parede Celular , Pectinas/química , Suspensões , Água
12.
Foods ; 11(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35053939

RESUMO

Processing results in the transformation of pulses' structural architecture. Consequently, digestion is anticipated to emerge from the combined effect of intrinsic (matrix-dependent) and extrinsic (processed-induced) factors. In this work, we aimed to investigate the interrelated effect of intrinsic and extrinsic factors on pulses' structural architecture and resulting digestive consequences. Three commercially relevant pulses (chickpea, pea, black bean) were selected based on reported differences in macronutrient and cell wall composition. Starch and protein digestion kinetics of hydrothermally processed whole pulses were assessed along with microstructural and physicochemical characteristics and compared to the digestion behavior of individual cotyledon cells isolated thereof. Despite different rates of hardness decay upon hydrothermal processing, the pulses reached similar residual hardness values (40 N). Aligning the pulses at the level of this macrostructural property translated into similar microstructural characteristics after mechanical disintegration (isolated cotyledon cells) with comparable yields of cotyledon cells for all pulses (41-62%). We observed that processing to equivalent microstructural properties resulted in similar starch and protein digestion kinetics, regardless of the pulse type and (prolonged) processing times. This demonstrated the capacity of (residual) hardness as a food structuring parameter in pulses. Furthermore, we illustrated that the digestive behavior of isolated cotyledon cells was representative of the digestion behavior of corresponding whole pulses, opening up perspectives for the incorporation of complete hydrothermally processed pulses as food ingredients.

13.
Food Chem ; 367: 130635, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34352690

RESUMO

In this study, tailored-made citrus pectin-derived compounds were produced through controlled enzymatic and/or chemical modifications of commercial citrus pectin with different degrees of methylesterification (DM) and similar average molecular weight (MW). In the first treatment, degradation of the citrus pectin (CP) materials by endo-polygalacturonase (EPG) yielded pectins with average Mw's (between 2 and 60 kDa). Separation and identification of the oligosaccharide fraction present in these samples, revealed the presence of non-methylesterified galacturonic acid oligomers with degree of polymerization (DP) 1-5. In the second treatment, exploiting the combined effect of EPG and pectin lyase, compounds with MW between 2 and 21 kDa, containing methylesterified and non-methylesterified polygalacturonans (DP 1-6), were generated. Finally, CP was sequentially modified by chemical saponification and the action of EPG. A sample of DM 11% and MW 2.7 kDa, containing POS (DP 1-5), was produced. Diverse pectin-derived compounds were successfully generated for further studies exploring their functionality.


Assuntos
Citrus , Pectinas , Peso Molecular , Oligossacarídeos , Poligalacturonase/genética
14.
Foods ; 10(11)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34828925

RESUMO

In the current study, the texturizing properties of partially pectin-depleted cell wall material (CWM) of apple, carrot, onion and pumpkin, and the potential of functionalization by high-pressure homogenization (HPH) were addressed. This partially pectin-depleted CWM was obtained as the unextractable fraction after acid pectin extraction (AcUF) on the alcohol-insoluble residue. Chemical analysis was performed to gain insight into the polysaccharide composition of the AcUF. The microstructural and functional properties of the AcUF in suspension were studied before HPH and after HPH at 20 and 80 MPa. Before HPH, even after the pectin extraction, the particles showed a cell-like morphology and occurred separately in the apple, onion and pumpkin AcUF and in a clustered manner in the carrot AcUF. The extent of disruption by the HPH treatments at 20 and 80 MPa was dependent on the botanical origin. Only for the onion and pumpkin AcUF, the water binding capacity was increased by HPH. Before HPH, the texturizing potential of the AcUFs was greatly varying between the different matrices. Whereas HPH improved the texturizing potential of the pumpkin AcUF, no effect and even a decrease was observed for the onion AcUF and the apple and carrot AcUF, respectively.

15.
Foods ; 10(7)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34359456

RESUMO

In the context of the increasing interest in natural food ingredients, the emulsifying and emulsion-stabilizing properties of three rhamnogalacturonan-rich apple pectin-derived samples were assessed by evaluating a range of physicochemical properties. An apple pectin (AP74) was structurally modified by a ß-eliminative reaction to obtain a RG-I-rich pectin sample (AP-RG). Subsequent acid hydrolysis of AP-RG led to the generation of pectin material with partially removed side chains (in particular arabinose depleted) (AP-RG-hydrolyzed), thus exhibiting differences in rhamnose, arabinose, and galactose in comparison to AP-RG. All samples exhibited surface activity to some extent, especially under acidic conditions (pH 2.5). Furthermore, the viscosity of the samples was assessed in relation to their emulsion-stabilizing properties. In a stability study, it was observed that the non-degraded AP74 sample at pH 2.5 exhibited the best performance among all the apple pectin-derived samples evaluated. This emulsion presented relatively small oil droplets upon emulsion production and was less prone to creaming than the emulsions stabilized by the (lower molecular weight) RG-I-rich materials. The AP-RG and AP-RG-hydrolyzed samples presented a slightly better emulsion stability at pH 6.0 than at pH 2.5. Yet, neither pectin sample was considered having good emulsifying and emulsion-stabilizing properties, indicated by the presence of coalesced and flocculated oil droplets.

16.
Foods ; 10(7)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34359534

RESUMO

Fresh common beans can be made 'instant' to produce fast-cooking beans by first soaking and cooking the beans before drying to create a shelf-stable product that can be rehydrated at the time of use. This study investigated the interplay between the drying process (air, vacuum and freeze drying), the microstructure and functional attributes of rehydrated pre-cooked beans. The microscopic study revealed that the three different drying techniques resulted in distinctly different microstructures, with the freeze drying process resulting in highly porous materials, while the air- and vacuum-dried samples underwent shrinkage. Additionally, the rehydration behavior (modeled using empirical and diffusion models) demonstrates that the high rehydration rate of freeze-dried beans is due to capillarity, while rehydration, in the case of air- and vacuum-dried beans, is primarily diffusion-controlled. Irrespective of the drying technique, the high rehydration capacity supports little to no structural collapse or damage to the cell walls. The color and texture of the rehydrated beans did not differ greatly from those of freshly cooked beans. The total peak area of the volatiles of rehydrated beans was significantly reduced by the drying process, but volatiles characteristic of the cooked bean aroma were retained. This new understanding is beneficial in tailoring the functional properties of pre-cooked dry convenient beans requiring short preparation times.

17.
Foods ; 10(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065932

RESUMO

In literature, different pectin extraction methods exist. In this study, two approaches starting from the alcohol-insoluble residue (AIR) of processing tomato are performed in a parallel way to facilitate the comparison of pectin yield and the compositional and structural properties of the extracted pectin and residual cell wall material obtained. On the one hand, pectin is extracted stepwise using hot water, chelating agents and low-alkaline conditions targeting fractionation of the pectin population. On the other hand, an industrially relevant single-step nitric acid pectin extraction (pH 1.6) is performed. In addition to these conventional solvent pectin extractions, the role of high-pressure homogenization (HPH) as a physically disruptive treatment to facilitate further pectin extraction from the partially pectin-depleted fraction obtained after acid extraction is addressed. The impact of HPH on the pectin cell wall polysaccharide interactions was shown as almost two thirds of the residual pectin were extractable during the subsequent extractions. For both extraction approaches, pectin obtained further in the sequence was characterized by a higher molecular mass and a higher amount of rhamnogalacturonan I domains. The estimated hemicellulose and cellulose content increased from 56 mol% for the AIR to almost 90 mol% for the final unextractable fractions of both methods.

18.
J Agric Food Chem ; 69(16): 4708-4719, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33856215

RESUMO

This research evaluated the impact of the emulsion interfacial composition on in vitro small intestinal lipolysis kinetics with the inclusion of rabbit gastric lipase resulting in a gastric prelipolysis step. O/w emulsions contained 5% triolein (w/w) and 1% (w/w) of the following emulsifiers: sodium taurodeoxycholate, citrus pectin, soy protein isolate, soy lecithin, and tween 80. Emulsions were subjected to static in vitro digestion and diverse lipolysis species quantified via a HPLC-charged aerosol detector. Single-response modeling indicated that the kinetics of lipolysis in the small intestinal phase were impacted by the emulsion particle size at the beginning of this phase. Multiresponse modeling permitted the elucidation of the lipolysis mechanism under in vitro conditions. The final reaction scheme included enzymatic and chemical conversions. The modeling strategies used in this research allowed to gain more insights into the kinetics and mechanism of in vitro lipid digestion.


Assuntos
Digestão , Lipólise , Animais , Emulsões , Cinética , Tamanho da Partícula , Coelhos , Estômago
19.
Food Res Int ; 140: 110062, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33648285

RESUMO

For the first time, a model system approach was combined with 1H NMR fingerprinting in studying non-enzymatic browning (NEB) of pasteurized shelf-stable orange juice during storage. Various NEB precursors were used individually or in combinations to formulate simple or complex model systems, respectively, in citric acid buffer. Based on orange juice composition, ascorbic acid, sugars (sucrose, glucose and fructose) and amino acids (proline, arginine, asparagine, aspartic acid, serine and glutamic acid) were selected as the precursors for the model systems. After pasteurization and during subsequent accelerated storage (42 °C, 16 weeks) the model systems displayed a three-phase browning development. The initial browning phase was mainly the result of ascorbic acid degradation especially in the presence of amino acids and sugars. In the later phases, the contribution of reactions of sugars and amino acids to browning became apparent. The application of 1H NMR fingerprinting on a simple model system containing ascorbic acid revealed that its degradation pathway to intermediates such as xylonic acid, acetic acid and erythrulose was responsible for the major changes during storage. When this model system was complexed by inclusion of sugars and amino acids, the hydrolysis of sucrose to glucose and fructose was identified as the main reaction leading to differences in the samples throughout storage. These three sugars dominated the NMR spectra of the samples, overshadowing several important compounds for NEB such as ascorbic acid and its degradation products. Other more advanced NMR experiments such as two-dimensional NMR analyses should be applied in future research to identify unknown compounds from NEB reactions.


Assuntos
Citrus sinensis , Ácido Ascórbico/análise , Sucos de Frutas e Vegetais , Pasteurização , Espectroscopia de Prótons por Ressonância Magnética
20.
Food Res Int ; 140: 109794, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33648161

RESUMO

A material science approach was explored towards understanding storage stability of common dry bean seeds. State diagrams of powders from distinct bean varieties were generated through determination of their glass transition temperatures (Tgs) using differential scanning calorimetry. Confronting the state diagrams with dry matter-temperature combinations during storage facilitated establishing the link between the relative position of the bean storage conditions along the Tg line and extent of hard-to-cook (HTC) development. Generally, Tg increases with dry matter content of the bean powders implying stability at increasingly higher temperatures attributed to the reduced plasticizing effect of water. Whereas Tg lines of powders of the different bean varieties were very similar, distinct differences were observed for the powders of bean substructures. At a given moisture content, the Tg of the cotyledon material was lower than that of the seed coat material and the Tg values of the whole bean powders were dominated by the cotyledon material. Cooking time analysis showed that whole beans stored above their Tg developed the HTC defect, this extent being correlated with the difference between storage temperature and Tg value. Considering the HTC development rate, (R-value, rate of change in cooking time with storage time over a period of 0-4 months or at 0 months of storage) the higher the difference between the storage temperature and the Tg value, the faster the change in cooking time during storage. Exploring the role of the major polymer components of bean cotyledon revealed that at a given moisture content, the cell wall material showed the lowest Tg values compared to the protein and starch isolates (Tg cell wall < Tg protein < Tg starch isolate). Confronting these values with the HTC development rates (change of cooking time with storage time) supports involvement of the cell wall material and probably protein changes in the development of this defect.


Assuntos
Phaseolus , Culinária , Cotilédone , Temperatura Alta , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...