Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
IEEE Trans Biomed Eng ; PP2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315599

RESUMO

OBJECTIVE: Detecting the cancerous growth margin and achieving a negative margin is one of the challenges that surgeons face during cancer procedures. A smart electrosurgical knife with integrated optical fibers has been designed previously to enable real-time use of diffuse reflectance spectroscopy for intraoperative margin assessment. In this paper, the thermal effect of the electrosurgical knife on tissue sensing is investigated. METHODS: Porcine tissues and phantoms were used to investigate the performance of the smart electrosurgical knife after electrosurgery. The fat-to-water content ratio (F/W-ratio) served as the discriminative parameter for distinguishing tissues and tissue mimicking phantoms with varying fat content. The F/W-ratio of tissues and phantoms was measured with the smart electrosurgical knife before and after 14 minutes of electrosurgery. Additionally, a layered porcine tissue and phantom were sliced and measured from top to bottom with the smart electrosurgical knife. RESULTS: Mapping the thermal activity of the electrosurgical knife's electrode during animal tissue electrosurgery revealed temperatures exceeding 400°C. Electrosurgery for 14 minutes had no impact on the device's accurate detection of the F/W-ratio. The smart electrosurgical knife enables real-time tissue detection and predicts the fat content of the next layer from 4 mm ahead. CONCLUSION: The design of the smart electrosurgical knife outlined in this paper demonstrates its potential utility for tissue detection during electrosurgery. SIGNIFICANCE: In the future, the smart electrosurgical knife could be a valuable intraoperative margin assessment tool, aiding surgeons in detecting tumor borders and achieving negative margins.

2.
Bioengineering (Basel) ; 11(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38247938

RESUMO

Diffuse Reflectance Spectroscopy (DRS) can provide tissue feedback for pedicle screw placement in spine surgery, yet the integration of fiber optics into the tip of the pedicle probe, a device used to pierce through bone, is challenging, since the optical probing depth and signal-to-noise ratio (SNR) are affected negatively compared to those of a blunt DRS probe. Through Monte Carlo simulations and optical phantom experiments, we show how differences in the shape of the instrument tip influence the acquired spectrum. Our findings demonstrate that a single bevel with an angle of 30∘ offers a solution to anticipate cortical breaches during pedicle screw placement. Compared to a blunt probe, the optical probing depth and SNR of a cone tip are reduced by 50%. The single bevel tip excels with 75% of the optical probing depth and a SNR remaining at approximately ⅔, facilitating the construction of a surgical instrument with integrated DRS.

3.
Biomed Opt Express ; 14(2): 739-750, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36874502

RESUMO

Accuracy in spinal fusion varies greatly depending on the experience of the physician. Real-time tissue feedback with diffuse reflectance spectroscopy has been shown to provide cortical breach detection using a conventional probe with two parallel fibers. In this study, Monte Carlo simulations and optical phantom experiments were conducted to investigate how angulation of the emitting fiber affects the probed volume to allow for the detection of acute breaches. Difference in intensity magnitude between cancellous and cortical spectra increased with the fiber angle, suggesting that outward angulated fibers are beneficial in acute breach scenarios. Proximity to the cortical bone could be detected best with fibers angulated at θ f = 45 ∘ for impending breaches between θ p = 0 ∘ and θ p = 45 ∘ . An orthopedic surgical device comprising a third fiber perpendicular to the device axis could thus cover the full impending breach range from θ p = 0 ∘ to θ p = 90 ∘ .

4.
J Surg Res ; 283: 705-712, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36462380

RESUMO

INTRODUCTION: Anastomotic leakage after gastrointestinal surgery has a high impact on patient's quality of life and its origin is associated with inadequate perfusion. Imaging photoplethysmography (iPPG) is a noninvasive imaging technique that measures blood-volume changes in the microvascular tissue bed and detects changes in tissue perfusion. MATERIALS AND METHODS: Intraoperative iPPG imaging was performed in 29 patients undergoing an open segment resection of the small intestine or colon. During each surgery, imaging was performed on fully perfused (true positives) and ischemic intestines (true negatives) and the anastomosis (unknowns). Imaging consisted of a 30-s video from which perfusion maps were extracted, providing detailed information about blood flow within the intestine microvasculature. To detect the predictive capabilities of iPPG, true positive and true negative perfusion conditions were used to develop two different perfusion classification methods. RESULTS: iPPG-derived perfusion parameters were highly correlated with perfusion-perfused or ischemic-in intestinal tissues. A perfusion confidence map distinguished perfused and ischemic intestinal tissues with 96% sensitivity and 86% specificity. Anastomosis images were scored as adequately perfused in 86% of cases and 14% inconclusive. The cubic-Support Vector Machine achieved 90.9% accuracy and an area under the curve of 96%. No anastomosis-related postoperative complications were encountered in this study. CONCLUSIONS: This study shows that noninvasive intraoperative iPPG is suitable for the objective assessment of small intestine and colon anastomotic perfusion. In addition, two perfusion classification methods were developed, providing the first step in an intestinal perfusion prediction model.


Assuntos
Procedimentos Cirúrgicos do Sistema Digestório , Fotopletismografia , Humanos , Fotopletismografia/efeitos adversos , Qualidade de Vida , Anastomose Cirúrgica/efeitos adversos , Procedimentos Cirúrgicos do Sistema Digestório/efeitos adversos , Fístula Anastomótica/etiologia , Perfusão/efeitos adversos , Verde de Indocianina
5.
Bioengineering (Basel) ; 9(10)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36290503

RESUMO

BACKGROUND: Neurosurgical procedures are complex and require years of training and experience. Traditional training on human cadavers is expensive, requires facilities and planning, and raises ethical concerns. Therefore, the use of anthropomorphic phantoms could be an excellent substitute. The aim of the study was to design and develop a patient-specific 3D-skull and brain model with realistic CT-attenuation suitable for conventional and augmented reality (AR)-navigated neurosurgical simulations. METHODS: The radiodensity of materials considered for the skull and brain phantoms were investigated using cone beam CT (CBCT) and compared to the radiodensities of the human skull and brain. The mechanical properties of the materials considered were tested in the laboratory and subsequently evaluated by clinically active neurosurgeons. Optimization of the phantom for the intended purposes was performed in a feedback cycle of tests and improvements. RESULTS: The skull, including a complete representation of the nasal cavity and skull base, was 3D printed using polylactic acid with calcium carbonate. The brain was cast using a mixture of water and coolant, with 4 wt% polyvinyl alcohol and 0.1 wt% barium sulfate, in a mold obtained from segmentation of CBCT and T1 weighted MR images from a cadaver. The experiments revealed that the radiodensities of the skull and brain phantoms were 547 and 38 Hounsfield units (HU), as compared to real skull bone and brain tissues with values of around 1300 and 30 HU, respectively. As for the mechanical properties testing, the brain phantom exhibited a similar elasticity to real brain tissue. The phantom was subsequently evaluated by neurosurgeons in simulations of endonasal skull-base surgery, brain biopsies, and external ventricular drain (EVD) placement and found to fulfill the requirements of a surgical phantom. CONCLUSIONS: A realistic and CT-compatible anthropomorphic head phantom was designed and successfully used for simulated augmented reality-led neurosurgical procedures. The anatomic details of the skull base and brain were realistically reproduced. This phantom can easily be manufactured and used for surgical training at a low cost.

6.
Biomed Opt Express ; 13(5): 2616-2643, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35774339

RESUMO

Emerging intraoperative tumor margin assessment techniques require the development of more complex and reliable organ phantoms to assess the performance of the technique before its translation into the clinic. In this work, electrically conductive tissue-mimicking materials (TMMs) based on fat, water and agar/gelatin were produced with tunable optical properties. The composition of the phantoms allowed for the assessment of tumor margins using diffuse reflectance spectroscopy, as the fat/water ratio served as a discriminating factor between the healthy and malignant tissue. Moreover, the possibility of using polyvinyl alcohol (PVA) or transglutaminase in combination with fat, water and gelatin for developing TMMs was studied. The diffuse spectral response of the developed phantom materials had a good match with the spectral response of porcine muscle and adipose tissue, as well as in vitro human breast tissue. Using the developed recipe, anatomically relevant heterogeneous breast phantoms representing the optical properties of different layers of the human breast were fabricated using 3D-printed molds. These TMMs can be used for further development of phantoms applicable for simulating the realistic breast conserving surgery workflow in order to evaluate the intraoperative optical-based tumor margin assessment techniques during electrosurgery.

7.
J Imaging ; 8(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35448221

RESUMO

Surgical excision is the golden standard for treatment of intestinal tumors. In this surgical procedure, inadequate perfusion of the anastomosis can lead to postoperative complications, such as anastomotic leakages. Imaging photoplethysmography (iPPG) can potentially provide objective and real-time feedback of the perfusion status of tissues. This feasibility study aims to evaluate an iPPG acquisition system during intestinal surgeries to detect the perfusion levels of the microvasculature tissue bed in different perfusion conditions. This feasibility study assesses three patients that underwent resection of a portion of the small intestine. Data was acquired from fully perfused, non-perfused and anastomosis parts of the intestine during different phases of the surgical procedure. Strategies for limiting motion and noise during acquisition were implemented. iPPG perfusion maps were successfully extracted from the intestine microvasculature, demonstrating that iPPG can be successfully used for detecting perturbations and perfusion changes in intestinal tissues during surgery. This study provides proof of concept for iPPG to detect changes in organ perfusion levels.

8.
Cancers (Basel) ; 14(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35326577

RESUMO

The most important prognostic factor for the survival of advanced-stage epithelial ovarian cancer (EOC) is the completeness of cytoreductive surgery (CRS). Therefore, an intraoperative technique to detect microscopic tumors would be of great value. The aim of this pilot study is to assess the feasibility of near-infrared hyperspectral imaging (HSI) for EOC detection in ex vivo tissue samples. Images were collected during CRS in 11 patients in the wavelength range of 665−975 nm, and processed by calibration, normalization, and noise filtering. A linear support vector machine (SVM) was employed to classify healthy and tumorous tissue (defined as >50% tumor cells). Classifier performance was evaluated using leave-one-out cross-validation. Images of 26 tissue samples from 10 patients were included, containing 26,446 data points that were matched to histopathology. Tumorous tissue could be classified with an area under the curve of 0.83, a sensitivity of 0.81, a specificity of 0.70, and Matthew's correlation coefficient of 0.41. This study paves the way to in vivo and intraoperative use of HSI during CRS. Hyperspectral imaging can scan a whole tissue surface in a fast and non-contact way. Our pilot study demonstrates that HSI and SVM learning can be used to discriminate EOC from surrounding tissue.

9.
Expert Rev Med Devices ; 19(3): 259-271, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35298323

RESUMO

INTRODUCTION: Steering light is relevant to many medical applications that require tissue illumination, sensing, or modification. To control the propagation direction of light beams, a great variety of innovative fiber-optic medical devices have been designed. AREAS COVERED: This review provides a comprehensive overview of the patent literature on light beam control in fiber-optic medical devices. The Web of Science Derwent Innovation Index database was scanned, and 81 patents on fiber-optic devices published in the last 20 years (2001-2021) were retrieved and categorized based on the working principle to steer light (refraction/reflection, scattering, diffraction) and the design strategy that was employed (within fiber, at fiber end, outside fiber). EXPERT OPINION: Patents describing medical devices were found for all categories, except for generating diffraction at the fiber end surface. The insight in the different designs reveals that there are still several opportunities to design innovative devices that can collect light at an angle off-axis, reduce the angular distribution of light, or split light into multiple beams.


Assuntos
Tecnologia de Fibra Óptica , Humanos
10.
Sci Rep ; 12(1): 1698, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105926

RESUMO

During oncological surgery, it can be challenging to identify the tumor and establish adequate resection margins. This study proposes a new two-layer approach in which diffuse reflectance spectroscopy (DRS) is used to predict the top layer thickness and classify the layers in two-layered phantom and animal tissue. Using wavelet-based and peak-based DRS spectral features, the proposed method could predict the top layer thickness with an accuracy of up to 0.35 mm. In addition, the tissue types of the first and second layers were classified with an accuracy of 0.95 and 0.99. Distinguishing multiple tissue layers during spectral analyses results in a better understanding of more complex tissue structures encountered in surgical practice.


Assuntos
Tecido Adiposo/química , Margens de Excisão , Modelos Biológicos , Músculos/química , Espectroscopia por Absorção de Raios X/métodos , Animais , Bovinos , Período Intraoperatório , Aprendizado de Máquina , Neoplasias/cirurgia , Imagens de Fantasmas , Suínos
11.
Neurosurg Focus ; 51(2): E7, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34333469

RESUMO

OBJECTIVE: The aim of this study was to evaluate the accuracy (deviation from the target or intended path) and efficacy (insertion time) of an augmented reality surgical navigation (ARSN) system for insertion of biopsy needles and external ventricular drains (EVDs), two common neurosurgical procedures that require high precision. METHODS: The hybrid operating room-based ARSN system, comprising a robotic C-arm with intraoperative cone-beam CT (CBCT) and integrated video tracking of the patient and instruments using nonobtrusive adhesive optical markers, was used. A 3D-printed skull phantom with a realistic gelatinous brain model containing air-filled ventricles and 2-mm spherical biopsy targets was obtained. After initial CBCT acquisition for target registration and planning, ARSN was used for 30 cranial biopsies and 10 EVD insertions. Needle positions were verified by CBCT. RESULTS: The mean accuracy of the biopsy needle insertions (n = 30) was 0.8 mm ± 0.43 mm. The median path length was 39 mm (range 16-104 mm) and did not correlate to accuracy (p = 0.15). The median device insertion time was 149 seconds (range 87-233 seconds). The mean accuracy for the EVD insertions (n = 10) was 2.9 mm ± 0.8 mm at the tip with a 0.7° ± 0.5° angular deviation compared with the planned path, and the median insertion time was 188 seconds (range 135-400 seconds). CONCLUSIONS: This study demonstrated that ARSN can be used for navigation of percutaneous cranial biopsies and EVDs with high accuracy and efficacy.


Assuntos
Realidade Aumentada , Cirurgia Assistida por Computador , Biópsia , Drenagem , Humanos , Crânio/diagnóstico por imagem , Crânio/cirurgia
12.
Breast Cancer Res ; 23(1): 59, 2021 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-34022928

RESUMO

BACKGROUND: Although the incidence of positive resection margins in breast-conserving surgery has decreased, both incomplete resection and unnecessary large resections still occur. This is especially the case in the surgical treatment of ductal carcinoma in situ (DCIS). Diffuse reflectance spectroscopy (DRS), an optical technology based on light tissue interactions, can potentially characterize tissue during surgery thereby guiding the surgeon intraoperatively. DRS has shown to be able to discriminate pure healthy breast tissue from pure invasive carcinoma (IC) but limited research has been done on (1) the actual optical characteristics of DCIS and (2) the ability of DRS to characterize measurements that are a mixture of tissue types. METHODS: In this study, DRS spectra were acquired from 107 breast specimens from 107 patients with proven IC and/or DCIS (1488 measurement locations). With a generalized estimating equation model, the differences between the DRS spectra of locations with DCIS and IC and only healthy tissue were compared to see if there were significant differences between these spectra. Subsequently, different classification models were developed to be able to predict if the DRS spectrum of a measurement location represented a measurement location with "healthy" or "malignant" tissue. In the development and testing of the models, different definitions for "healthy" and "malignant" were used. This allowed varying the level of homogeneity in the train and test data. RESULTS: It was found that the optical characteristics of IC and DCIS were similar. Regarding the classification of tissue with a mixture of tissue types, it was found that using mixed measurement locations in the development of the classification models did not tremendously improve the accuracy of the classification of other measurement locations with a mixture of tissue types. The evaluated classification models were able to classify measurement locations with > 5% malignant cells with a Matthews correlation coefficient of 0.41 or 0.40. Some models showed better sensitivity whereas others had better specificity. CONCLUSION: The results suggest that DRS has the potential to detect malignant tissue, including DCIS, in healthy breast tissue and could thus be helpful for surgical guidance.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Cirurgia Assistida por Computador/métodos , Idoso , Mama/química , Neoplasias da Mama/química , Neoplasias da Mama/cirurgia , Carcinoma Ductal de Mama/química , Carcinoma Ductal de Mama/cirurgia , Carcinoma Intraductal não Infiltrante/química , Carcinoma Intraductal não Infiltrante/cirurgia , Feminino , Humanos , Imageamento Hiperespectral , Margens de Excisão , Mastectomia Segmentar , Pessoa de Meia-Idade , Modelos Biológicos , Sensibilidade e Especificidade
13.
Biomed Eng Online ; 20(1): 7, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413458

RESUMO

BACKGROUND: The increased popularity of minimally invasive spinal surgery calls for a revision of guidance techniques to prevent injuries of nearby neural and vascular structures. Lipid content has previously been proposed as a distinguishing criterion for different bone tissues to provide guidance along the interface of cancellous and cortical bone. This study aims to investigate how fat is distributed throughout the spinal column to confirm or refute the suitability of lipid content for guidance purposes. RESULTS: Proton density fat fraction (PDFF) was assessed over all vertebral levels for six human cadavers between 53 and 92 years of age, based on fat and water MR images. According to their distance to the vertebra contour, the data points were grouped in five regions of interest (ROIs): cortical bone (-1 mm to 0 mm), pre-cortical zone (PCZ) 1-3 (0-1 mm; 1-2 mm; 2-3 mm), and cancellous bone ([Formula: see text] 3 mm). For PCZ1 vs. PCZ2, a significant difference in mean PDFF of between -7.59 pp and -4.39 pp on average was found. For cortical bone vs. PCZ1, a significant difference in mean PDFF of between -27.09 pp and -18.96 pp on average was found. CONCLUSION: A relationship between distance from the cortical bone boundary and lipid content could be established, paving the way for guidance techniques based on fat fraction detection for spinal surgery.


Assuntos
Tecido Adiposo/citologia , Vértebras Lombares/citologia , Vértebras Lombares/diagnóstico por imagem , Imageamento por Ressonância Magnética , Prótons , Adulto , Cadáver , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
14.
Biomed Opt Express ; 11(5): 2402-2415, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32499933

RESUMO

Using an intraoperative margin assessment technique during breast-conserving surgery (BCS) helps surgeons to decrease the risk of positive margin occurrence. Diffuse reflectance spectroscopy (DRS) has the potential to discriminate healthy breast tissue from cancerous tissue. We investigated the performance of an electrosurgical knife integrated with a DRS on porcine muscle and adipose tissue. Characterization of the formed debris on the optical fibers after electrosurgery revealed that the contamination is mostly burned tissue. Even with contaminated optical fibers, both tissues could still be discriminated with DRS based on fat/water ratio. Therefore, an electrosurgical knife integrated with DRS may be a promising technology to provide the surgeon with real-time guidance during BCS.

15.
Biomed Eng Online ; 19(1): 47, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32532305

RESUMO

BACKGROUND: The safe and accurate placement of pedicle screws remains a critical step in open and minimally invasive spine surgery, emphasizing the need for intraoperative guidance techniques. Diffuse reflectance spectroscopy (DRS) is an optical sensing technology that may provide intraoperative guidance in pedicle screw placement. PURPOSE: The study presents the first in vivo minimally invasive procedure using DRS sensing at the tip of a Jamshidi needle with an integrated optical K-wire. We investigate the effect of tissue perfusion and probe-handling conditions on the reliability of fat fraction measurements for breach detection in vivo. METHODS: A Jamshidi needle with an integrated fiber-optic K-wire was gradually inserted into the vertebrae under intraoperative image guidance. The fiber-optic K-wire consisted of two optical fibers with a fiber-to-fiber distance of 1.024 mm. DRS spectra in the wavelength range of 450 to 1600 nm were acquired at several positions along the path inside the vertebrae. Probe-handling conditions were varied by changing the amount of pressure exerted on the probe within the vertebrae. Continuous spectra were recorded as the probe was placed in the center of the vertebral body while the porcine specimen was sacrificed via a lethal injection. RESULTS: A typical insertion of the fiber-optic K-wire showed a drop in fat fraction during an anterior breach as the probe transitioned from cancellous to cortical bone. Fat fraction measurements were found to be similar irrespective of the amount of pressure exerted on the probe (p = 0.65). The 95% confidence interval of fat fraction determination was found in the narrow range of 1.5-3.6% under various probe-handling conditions. The fat fraction measurements remained stable during 70 min of decreased blood flow after the animal was sacrificed. DISCUSSIONS: These findings indicate that changes in tissue perfusion and probe-handling conditions have a relatively low measureable effect on the DRS signal quality and thereby on the determination of fat fraction as a breach detection signal. CONCLUSIONS: Fat fraction quantification for intraoperative pedicle screw breach detection is reliable, irrespective of changes in tissue perfusion and probe-handling conditions.


Assuntos
Procedimentos Cirúrgicos Minimamente Invasivos/instrumentação , Parafusos Pediculares , Análise Espectral , Animais , Procedimentos Cirúrgicos Minimamente Invasivos/efeitos adversos , Reprodutibilidade dos Testes , Segurança , Suínos
17.
PLoS One ; 15(1): e0227312, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31945082

RESUMO

OBJECTIVE: Surgical navigation is a well-established tool in endoscopic skull base surgery. However, navigational and endoscopic views are usually displayed on separate monitors, forcing the surgeon to focus on one or the other. Aiming to provide real-time integration of endoscopic and diagnostic imaging information, we present a new navigation technique based on augmented reality with fusion of intraoperative cone beam computed tomography (CBCT) on the endoscopic view. The aim of this study was to evaluate the accuracy of the method. MATERIAL AND METHODS: An augmented reality surgical navigation system (ARSN) with 3D CBCT capability was used. The navigation system incorporates an optical tracking system (OTS) with four video cameras embedded in the flat detector of the motorized C-arm. Intra-operative CBCT images were fused with the view of the surgical field obtained by the endoscope's camera. Accuracy of CBCT image co-registration was tested using a custom-made grid with incorporated 3D spheres. RESULTS: Co-registration of the CBCT image on the endoscopic view was performed. Accuracy of the overlay, measured as mean target registration error (TRE), was 0.55 mm with a standard deviation of 0.24 mm and with a median value of 0.51mm and interquartile range of 0.39--0.68 mm. CONCLUSION: We present a novel augmented reality surgical navigation system, with fusion of intraoperative CBCT on the endoscopic view. The system shows sub-millimeter accuracy.


Assuntos
Realidade Aumentada , Tomografia Computadorizada de Feixe Cônico/métodos , Imageamento Tridimensional/métodos , Neuroendoscopia/métodos , Neuronavegação/métodos , Base do Crânio/cirurgia , Cirurgia Assistida por Computador/métodos , Tomografia Computadorizada de Feixe Cônico/instrumentação , Humanos , Imagens de Fantasmas , Cirurgia Assistida por Computador/instrumentação
18.
Lasers Surg Med ; 52(6): 496-502, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31522461

RESUMO

BACKGROUND AND OBJECTIVES: There is a clinical need to assess the resection margins of tongue cancer specimens, intraoperatively. In the current ex vivo study, we evaluated the feasibility of hyperspectral diffuse reflectance imaging (HSI) for distinguishing tumor from the healthy tongue tissue. STUDY DESIGN/MATERIALS AND METHODS: Fresh surgical specimens (n = 14) of squamous cell carcinoma of the tongue were scanned with two hyperspectral cameras that cover the visible and near-infrared spectrum (400-1,700 nm). Each pixel of the hyperspectral image represents a measure of the diffuse optical reflectance. A neural network was used for tissue-type prediction of the hyperspectral images of the visual and near-infrared data sets separately as well as both data sets combined. RESULTS: HSI was able to distinguish tumor from muscle with a good accuracy. The diagnostic performance of both wavelength ranges (sensitivity/specificity of visual and near-infrared were 84%/80% and 77%/77%, respectively) appears to be comparable and there is no additional benefit of combining the two wavelength ranges (sensitivity and specificity were 83%/76%). CONCLUSIONS: HSI has a strong potential for intra-operative assessment of tumor resection margins of squamous cell carcinoma of the tongue. This may optimize surgery, as the entire resection surface can be scanned in a single run and the results can be readily available. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.


Assuntos
Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/cirurgia , Imageamento Hiperespectral , Margens de Excisão , Neoplasias da Língua/diagnóstico por imagem , Neoplasias da Língua/cirurgia , Carcinoma de Células Escamosas/patologia , Estudos de Viabilidade , Humanos , Cuidados Intraoperatórios , Sensibilidade e Especificidade , Técnicas de Cultura de Tecidos , Neoplasias da Língua/patologia
19.
Lasers Surg Med ; 52(7): 604-611, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31793012

RESUMO

BACKGROUND AND OBJECTIVES: In patients with rectal cancer who received neoadjuvant (chemo)radiotherapy, fibrosis is induced in and around the tumor area. As tumors and fibrosis have similar visual and tactile feedback, they are hard to distinguish during surgery. To prevent positive resection margins during surgery and spare healthy tissue, it would be of great benefit to have a real-time tissue classification technology that can be used in vivo. STUDY DESIGN/MATERIALS AND METHODS: In this study diffuse reflectance spectroscopy (DRS) was evaluated for real-time tissue classification of tumor and fibrosis. DRS spectra of fibrosis and tumor were obtained on excised rectal specimens. After normalization using the area under the curve, a support vector machine was trained using a 10-fold cross-validation. RESULTS: Using spectra of pure tumor tissue and pure fibrosis tissue, we obtained a mean accuracy of 0.88. This decreased to a mean accuracy of 0.61 when tumor measurements were used in which a layer of healthy tissue, mainly fibrosis, was present between the tumor and the measurement surface. CONCLUSION: It is possible to distinguish pure fibrosis from pure tumor. However, when the measurements on tumor also involve fibrotic tissue, the classification accuracy decreases. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.


Assuntos
Neoplasias Retais , Fibrose , Humanos , Margens de Excisão , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/cirurgia , Análise Espectral
20.
Biomed Opt Express ; 10(11): 5905-5920, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31799054

RESUMO

Pedicle screw placement accuracy during spinal fixation surgery varies greatly and severe misplacement has been reported in 1-6.5% of screws. Diffuse reflectance (DR) spectroscopy has previously been shown to reliably discriminate between tissues in the human body. We postulate that it could be used to discriminate between cancellous and cortical bone. Therefore, the purpose of this study is to validate DR spectroscopy as a warning system to detect impending pedicle screw breach in a cadaveric surgical setting using typical clinical breach scenarios. DR spectroscopy was incorporated at the tip of an integrated pedicle screw and screw driver used for tissue probing during pedicle screw insertions on six cadavers. Measurements were collected in the wavelength range of 400-1600 nm and each insertion was planned to result in a breach. Measurements were labelled as cancellous, cortical or representing a pre-cortical zone (PCZ) in between, based on information from cone beam computed tomographies at corresponding positions. In addition, DR spectroscopy data was recorded after breach. Four typical pedicle breach types were performed, and a total of 45 pedicle breaches were recorded. For each breach direction, the technology was able to detect the transition of the screw tip from the cancellous bone to the PCZ (P < 0.001), to cortical bone (P < 0.001), and to a subsequent breach (P < 0.001). Using support vector machine (SVM) classification, breach could reliably be detected with a sensitivity of 98.3 % [94.3-100 %] and a specificity of 97.7 % [91.0-100 %]. We conclude that DR spectroscopy reliably identifies the area of transition from cancellous to cortical bone in typical breach scenarios and can warn the surgeon of impending pedicle breach, thereby resulting in safer spinal fixation surgeries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...