Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
IEEE Trans Med Imaging ; 35(2): 539-49, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26415201

RESUMO

In this paper, we propose a novel method to estimate the confidence of a registration that does not require any ground truth, is independent from the registration algorithm and the resulting confidence is correlated with the amount of registration error. We first apply a local search to match patterns between the registered image pairs. Local search induces a cost space per voxel which we explore further to estimate the confidence of the registration similar to confidence estimation algorithms for stereo matching. We test our method on both synthetically generated registration errors and on real registrations with ground truth. The experimental results show that our confidence measure can estimate registration errors and it is correlated with local errors.


Assuntos
Algoritmos , Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Humanos , Pulmão/diagnóstico por imagem
2.
Med Image Anal ; 16(4): 767-85, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22297264

RESUMO

First-pass cardiac MR perfusion (CMRP) imaging has undergone rapid technical advancements in recent years. Although the efficacy of CMRP imaging in the assessment of coronary artery diseases (CAD) has been proven, its clinical use is still limited. This limitation stems, in part, from manual interaction required to quantitatively analyze the large amount of data. This process is tedious, time-consuming, and prone to operator bias. Furthermore, acquisition and patient related image artifacts reduce the accuracy of quantitative perfusion assessment. With the advent of semi- and fully automatic image processing methods, not only the challenges posed by these artifacts have been overcome to a large extent, but a significant reduction has also been achieved in analysis time and operator bias. Despite an extensive literature on such image processing methods, to date, no survey has been performed to discuss this dynamic field. The purpose of this article is to provide an overview of the current state of the field with a categorical study, along with a future perspective on the clinical acceptance of image processing methods in the diagnosis of CAD.


Assuntos
Algoritmos , Doença da Artéria Coronariana/diagnóstico , Interpretação de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Imagem de Perfusão do Miocárdio/métodos , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
IEEE Trans Med Imaging ; 31(2): 461-73, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21997250

RESUMO

Fluorescence loss in photobleaching (FLIP) is a method to study compartment connectivity in living cells. A FLIP sequence is obtained by alternatively bleaching a spot in a cell and acquiring an image of the complete cell. Connectivity is estimated by comparing fluorescence signal attenuation in different cell parts. The measurements of the fluorescence attenuation are hampered by the low signal to noise ratio of the FLIP sequences, by sudden sample shifts and by sample drift. This paper describes a method that estimates the attenuation by modeling photobleaching as exponentially decaying signals. Sudden motion artifacts are minimized by registering the frames of a FLIP sequence to target frames based on the estimated model and by removing frames that contain deformations. Linear motion (sample drift) is reduced by minimizing the entropy of the estimated attenuation coefficients. Experiments on 16 in vivo FLIP sequences of muscle cells in Drosophila show that the proposed method results in fluorescence attenuations similar to the manually identified gold standard, but with standard deviations of approximately 50 times smaller. As a result of this higher precision, cell compartment edges and details such as cell nuclei become clearly discernible. The main value of this method is that it uses a model of the bleaching process to correct motion and that the model based fluorescence intensity and attenuation estimates can be interpreted easily. The proposed method is fully automatic, and runs in approximately one minute per sequence, making it suitable for unsupervised batch processing of large data series.


Assuntos
Algoritmos , Artefatos , Recuperação de Fluorescência Após Fotodegradação/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Fibras Musculares Esqueléticas/citologia , Reconhecimento Automatizado de Padrão/métodos , Animais , Drosophila melanogaster , Movimento (Física) , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Técnica de Subtração
4.
IEEE Trans Vis Comput Graph ; 16(6): 1396-404, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20975180

RESUMO

The analysis of multi-timepoint whole-body small animal CT data is greatly complicated by the varying posture of the subject at different timepoints. Due to these variations, correctly relating and comparing corresponding regions of interest is challenging.In addition, occlusion may prevent effective visualization of these regions of interest. To address these problems, we have developed a method that fully automatically maps the data to a standardized layout of sub-volumes, based on an articulated atlas registration. We have dubbed this process articulated planar reformation, or APR. A sub-volume can be interactively selected for closer inspection and can be compared with the corresponding sub-volume at the other timepoints, employing a number of different comparative visualization approaches. We provide an additional tool that highlights possibly interesting areas based on the change of bone density between timepoints. Furthermore we allow visualization of the local registration error, to give an indication of the accuracy of the registration. We have evaluated our approach on a case that exhibits cancer-induced bone resorption.


Assuntos
Gráficos por Computador , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Animais , Osso e Ossos/anatomia & histologia , Osso e Ossos/diagnóstico por imagem , Simulação por Computador , Camundongos , Modelos Anatômicos , Postura , Crânio/anatomia & histologia , Crânio/diagnóstico por imagem , Tomografia Computadorizada por Raios X/estatística & dados numéricos
5.
Acad Radiol ; 17(11): 1375-85, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20801696

RESUMO

RATIONALE AND OBJECTIVES: Derivation of diagnostically relevant parameters from first-pass myocardial perfusion magnetic resonance images involves the tedious and time-consuming manual segmentation of the myocardium in a large number of images. To reduce the manual interaction and expedite the perfusion analysis, we propose an automatic registration and segmentation method for the derivation of perfusion linked parameters. MATERIALS AND METHODS: A complete automation was accomplished by first registering misaligned images using a method based on independent component analysis, and then using the registered data to automatically segment the myocardium with active appearance models. We used 18 perfusion studies (100 images per study) for validation in which the automatically obtained (AO) contours were compared with expert drawn contours on the basis of point-to-curve error, Dice index, and relative perfusion upslope in the myocardium. RESULTS: Visual inspection revealed successful segmentation in 15 out of 18 studies. Comparison of the AO contours with expert drawn contours yielded 2.23 ± 0.53 mm and 0.91 ± 0.02 as point-to-curve error and Dice index, respectively. The average difference between manually and automatically obtained relative upslope parameters was found to be statistically insignificant (P = .37). Moreover, the analysis time per slice was reduced from 20 minutes (manual) to 1.5 minutes (automatic). CONCLUSION: We proposed an automatic method that significantly reduced the time required for analysis of first-pass cardiac magnetic resonance perfusion images. The robustness and accuracy of the proposed method were demonstrated by the high spatial correspondence and statistically insignificant difference in perfusion parameters, when AO contours were compared with expert drawn contours.


Assuntos
Doença da Artéria Coronariana/patologia , Armazenamento e Recuperação da Informação/métodos , Angiografia por Ressonância Magnética/métodos , Imagem Cinética por Ressonância Magnética/métodos , Imagem de Perfusão do Miocárdio/métodos , Reconhecimento Automatizado de Padrão/métodos , Técnica de Subtração , Algoritmos , Inteligência Artificial , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Microsc Res Tech ; 72(6): 424-30, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19165737

RESUMO

Pollen is a major cause of allergy and monitoring pollen in the air is relevant for diagnostic purposes, development of pollen forecasts, and for biomedical and biological researches. Since counting airborne pollen is a time-consuming task and requires specialized personnel, an automated pollen counting system is desirable. In this article, we present a method for detecting pollen in multifocal optical microscopy images of air samples collected by a Burkard pollen sampler, as a first step in an automated pollen counting procedure. Both color and shape information was used to discriminate pollen grains from other airborne material in the images, such as fungal spores and dirt. A training set of 44 images from successive focal planes (stacks) was used to train the system in recognizing pollen color and for optimization. The performance of the system has been evaluated using a separate set of 17 image stacks containing 65 pollen grains, of which 86% was detected. The obtained precision of 61% can still be increased in the next step of classifying the different pollen in such a counting system. These results show that the detection of pollen is feasible in images from a pollen sampler collecting ambient air. This first step in automated pollen detection may form a reliable basis for an automated pollen counting system.


Assuntos
Ar/análise , Microscopia/métodos , Pólen/ultraestrutura , Automação/métodos , Cor , Processamento de Imagem Assistida por Computador/métodos , Sensibilidade e Especificidade
7.
IEEE Trans Pattern Anal Mach Intell ; 30(11): 2040-6, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18787250

RESUMO

To recognize speech, handwriting or sign language, many hybrid approaches have been proposed that combine Dynamic Time Warping (DTW) or Hidden Markov Models (HMM) with discriminative classifiers. However, all methods rely directly on the likelihood models of DTW/HMM. We hypothesize that time warping and classification should be separated because of conflicting likelihood modelling demands. To overcome these restrictions, we propose to use Statistical DTW (SDTW) only for time warping, while classifying the warped features with a different method. Two novel statistical classifiers are proposed (CDFD and Q-DFFM), both using a selection of discriminative features (DF), and are shown to outperform HMM and SDTW. However, we have found that combining likelihoods of multiple models in a second classification stage degrades performance of the proposed classifiers, while improving performance with HMM and SDTW. A proof-of-concept experiment, combining DFFM mappings of multiple SDTW models with SDTW likelihoods, shows that also for model-combining, hybrid classification can provide significant improvement over SDTW. Although recognition is mainly based on 3D hand motion features, these results can be expected to generalize to recognition with more detailed measurements such as hand/body pose and facial expression.


Assuntos
Algoritmos , Inteligência Artificial , Interpretação de Imagem Assistida por Computador/métodos , Armazenamento e Recuperação da Informação/métodos , Reconhecimento Automatizado de Padrão/métodos , Interpretação Estatística de Dados , Aumento da Imagem/métodos
8.
Artigo em Inglês | MEDLINE | ID: mdl-16686039

RESUMO

Analysis of CT datasets is commonly time consuming because of the required manual interaction. We present a novel and fast automatic initialization algorithm to detect the carotid arteries providing a fully automated approach of the segmentation and centerline detection. First, the volume of interest (VOI) is estimated using a shoulder landmark. The carotid arteries are subsequently detected in axial slices of the VOI by applying a circular Hough transform. To select carotid arteries related signals in the Hough space, a 3-D, direction dependent hierarchical clustering is used. To allow a successful detection for a wide range of vessel diameters, a feedback architecture was introduced. The algorithm was designed and optimized using a training set of 20 patients and subsequently evaluated using 31 test datasets. The detection algorithm, including VOI estimation, correctly detects 88% of the carotid arteries. Even though not all carotid arteries have been correctly detected, the results are very promising.


Assuntos
Algoritmos , Angiografia/métodos , Inteligência Artificial , Artérias Carótidas/diagnóstico por imagem , Imageamento Tridimensional/métodos , Armazenamento e Recuperação da Informação/métodos , Reconhecimento Automatizado de Padrão/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Humanos , Intensificação de Imagem Radiográfica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA