Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 14: 1148827, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560305

RESUMO

Objective: Chronic ethanol consumption is known to cause alcohol-associated liver disease, which poses a global health concern as almost a quarter of heavy drinkers develop severe liver damage. Alcohol-induced liver disease ranges from a mild, reversible steatotic liver to alcoholic steatohepatitis and irreversible liver fibrosis and cirrhosis, ultimately requiring liver transplantation. While ethanol consumption is associated with dysregulated lipid metabolism and altered cholesterol homeostasis, the impact of dyslipidemia and pre-existing hypercholesterolemia on the development of alcohol-associated liver disease remains to be elucidated. Design: To address the influence of systemic dyslipidemia on ethanol-induced liver disease, chronic-binge ethanol feeding was applied to female C57BL/6J (wild type) mice and mice deficient for the low-density lipoprotein receptor (Ldlr-/-), which display a human-like lipoprotein profile with elevated cholesterol and triglyceride levels in circulation. Respective control groups were pair-fed an isocaloric diet. Results: Chronic-binge ethanol feeding did not alter systemic lipid levels in wild type mice. While increased systemic cholesterol levels in Ldlr-/- mice were not affected by ethanol feeding, chronic-binge ethanol diet aggravated elevated plasma triglyceride levels in Ldlr-/- mice. Despite higher circulatory triglyceride levels in Ldlr-/- mice, hepatic lipid levels and the development of hepatic steatosis were not different from wild type mice after ethanol diet, while hepatic expression of genes related to lipid metabolism (Lpl) and transport (Cd36) showed minor changes. Immunohistochemical assessment indicated a lower induction of infiltrating neutrophils in the livers of ethanol-fed Ldlr-/- mice compared to wild type mice. In line, hepatic mRNA levels of the pro-inflammatory genes Ly6g, Cd11b, Ccr2, Cxcl1 and F4/80 were reduced, indicating less inflammation in the livers of Ldlr-/- mice which was associated with reduced Tlr9 induction. While systemic ALT and hepatic MDA levels were not different, Ldlr-deficient mice showed accelerated liver fibrosis development after chronic-binge ethanol diet than wild type mice, as indicated by increased levels of Sirius Red staining and higher expression of pro-fibrotic genes Tgfb, Col1a1 and Col3a1. Ldlr-/- and wild type mice had similar plasma ethanol levels and did not show differences in the hepatic mRNA levels of Adh1 and Cyp2e1, important for ethanol metabolism. Conclusion: Our results highlight that chronic-binge ethanol feeding enhances systemic dyslipidemia in Ldlr-/- mice which might accelerate the development of hepatic fibrosis, independent of hepatic lipid levels.


Assuntos
Dislipidemias , Fígado Gorduroso , Hipercolesterolemia , Hiperlipidemias , Hepatopatias Alcoólicas , Feminino , Camundongos , Humanos , Animais , Etanol/toxicidade , Camundongos Endogâmicos C57BL , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/genética , Hepatopatias Alcoólicas/complicações , Hepatopatias Alcoólicas/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Hipercolesterolemia/complicações , Hiperlipidemias/complicações , Dislipidemias/complicações , Colesterol , Triglicerídeos , Lipídeos
2.
Immunity ; 56(8): 1809-1824.e10, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37499656

RESUMO

Complement factor H (CFH) negatively regulates consumption of complement component 3 (C3), thereby restricting complement activation. Genetic variants in CFH predispose to chronic inflammatory disease. Here, we examined the impact of CFH on atherosclerosis development. In a mouse model of atherosclerosis, CFH deficiency limited plaque necrosis in a C3-dependent manner. Deletion of CFH in monocyte-derived inflammatory macrophages propagated uncontrolled cell-autonomous C3 consumption without downstream C5 activation and heightened efferocytotic capacity. Among leukocytes, Cfh expression was restricted to monocytes and macrophages, increased during inflammation, and coincided with the accumulation of intracellular C3. Macrophage-derived CFH was sufficient to dampen resolution of inflammation, and hematopoietic deletion of CFH in atherosclerosis-prone mice promoted lesional efferocytosis and reduced plaque size. Furthermore, we identified monocyte-derived inflammatory macrophages expressing C3 and CFH in human atherosclerotic plaques. Our findings reveal a regulatory axis wherein CFH controls intracellular C3 levels of macrophages in a cell-autonomous manner, evidencing the importance of on-site complement regulation in the pathogenesis of inflammatory diseases.


Assuntos
Aterosclerose , Complemento C3 , Animais , Humanos , Camundongos , Aterosclerose/metabolismo , Complemento C3/genética , Complemento C3/metabolismo , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Inflamação , Macrófagos/metabolismo
3.
Gut ; 72(10): 1959-1970, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36690432

RESUMO

OBJECTIVE: Alcohol-associated liver disease is accompanied by microbial dysbiosis, increased intestinal permeability and hepatic exposure to translocated microbial products that contribute to disease progression. A key strategy to generate immune protection against invading pathogens is the secretion of IgA in the gut. Intestinal IgA levels depend on the polymeric immunoglobulin receptor (pIgR), which transports IgA across the epithelial barrier into the intestinal lumen and hepatic canaliculi. Here, we aimed to address the function of pIgR during ethanol-induced liver disease. DESIGN: pIgR and IgA were assessed in livers from patients with alcohol-associated hepatitis and controls. Wild-type and pIgR-deficient (pIgR-/- ) littermates were subjected to the chronic-binge (NIAAA model) and Lieber-DeCarli feeding model for 8 weeks. Hepatic pIgR re-expression was established in pIgR-/- mice using adeno-associated virus serotype 8 (AAV8)-mediated pIgR expression in hepatocytes. RESULTS: Livers of patients with alcohol-associated hepatitis demonstrated an increased colocalisation of pIgR and IgA within canaliculi and apical poles of hepatocytes. pIgR-deficient mice developed increased liver injury, steatosis and inflammation after ethanol feeding compared with wild-type littermates. Furthermore, mice lacking pIgR demonstrated increased plasma lipopolysaccharide levels and more hepatic bacteria, indicating elevated bacterial translocation. Treatment with non-absorbable antibiotics prevented ethanol-induced liver disease in pIgR-/- mice. Injection of AAV8 expressing pIgR into pIgR-/- mice prior to ethanol feeding increased intestinal IgA levels and ameliorated ethanol-induced steatohepatitis compared with pIgR-/- mice injected with control-AAV8 by reducing bacterial translocation. CONCLUSION: Our results highlight that dysfunctional hepatic pIgR enhances alcohol-associated liver disease due to impaired antimicrobial defence by IgA in the gut.


Assuntos
Fígado Gorduroso , Hepatite , Hepatopatias Alcoólicas , Receptores de Imunoglobulina Polimérica , Camundongos , Animais , Etanol/metabolismo , Receptores de Imunoglobulina Polimérica/metabolismo , Translocação Bacteriana , Fígado/metabolismo , Hepatopatias Alcoólicas/prevenção & controle , Hepatopatias Alcoólicas/metabolismo , Fígado Gorduroso/metabolismo , Hepatite/metabolismo , Imunoglobulina A , Camundongos Endogâmicos C57BL
4.
Hepatol Commun ; 6(9): 2368-2378, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35691019

RESUMO

Bile salt export pump (Bsep) (Abcb11)-/- mice are protected from acquired cholestatic injury due to metabolic preconditioning with a hydrophilic bile acid (BA) pool with formation of tetrahydroxylated bile acids (THBAs). We aimed to explore whether loss of Bsep and subsequent elevation of THBA levels may have immunomodulatory effects, thus improving liver injury in the multidrug resistance protein 2 (Mdr2) (Abcb4)-/- mouse. Cholestatic liver injury in Mdr2-/- Bsep-/- double knockout (DKO), Mdr2-/- , Bsep-/- , and wild-type mice was studied for comparison. Mdr2-/- mice were treated with a THBA (3α,6α,7α,12α-Tetrahydroxycholanoic acid). RNA/protein expression of inflammatory/fibrotic markers were investigated. Serum BA-profiling was assessed by ultra-performance liquid chromatography tandem mass spectrometry. Hepatic immune cell profile was quantified by flow cytometric analysis (FACS). In vitro, the THBA effect on chenodeoxycholic acid (CDCA)-induced inflammatory signaling in hepatocyte and cholangiocytes as well as lipopolysaccharide (LPS)/interferon-γ (IFN-γ)-induced macrophage activation was analyzed. In contrast to Mdr2-/- , DKO mice showed no features of sclerosing cholangitis. Sixty-seven percent of serum BAs in DKO mice were polyhydroxylated (mostly THBAs), whereas Mdr2-/- mice did not have these BAs. Compared with Mdr2-/- , DKO animals were protected from hepatic inflammation/fibrosis. THBA feeding in Mdr2-/- mice improved liver injury. FACS analysis in DKO and Mdr2-/- THBA-fed mice showed changes of the hepatic immune cell profile towards an anti-inflammatory pattern. Early growth response 1 (EGR1) protein expression was reduced in DKO and in Mdr2-/- THBA-fed mice compared with Mdr2-/- control mice. In vitro, THBA-reduced CDCA induced EGR1 protein and mRNA expression of inflammatory markers in hepatocytes and cholangiocytes. LPS/IFN-γ-induced macrophage activation was ameliorated by THBA. THBAs repress EGR1-related key pro-inflammatory pathways. Conclusion: THBA and their downstream targets may represent a potential treatment strategy for cholestatic liver diseases.


Assuntos
Ácidos e Sais Biliares , Colangite Esclerosante , Colestase , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Ácidos e Sais Biliares/química , Ácidos e Sais Biliares/farmacologia , Ductos Biliares/patologia , Colangite Esclerosante/genética , Colestase/complicações , Colestase/genética , Modelos Animais de Doenças , Imunomodulação/efeitos dos fármacos , Interferon gama , Lipopolissacarídeos/farmacologia , Cirrose Hepática/genética , Camundongos , Camundongos Knockout , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
5.
J Hepatol ; 77(5): 1373-1385, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35750138

RESUMO

BACKGROUND & AIMS: Previous single-cell RNA-sequencing analyses have shown that Trem2-expressing macrophages are present in the liver during obesity, non-alcoholic steatohepatitis (NASH) and cirrhosis. Herein, we aimed to functionally characterize the role of bone marrow-derived TREM2-expressing macrophage populations in NASH. METHODS: We used bulk RNA sequencing to assess the hepatic molecular response to lipid-dependent dietary intervention in mice. Spatial mapping, bone marrow transplantation in two complementary murine models and single-cell sequencing were applied to functionally characterize the role of TREM2+ macrophage populations in NASH. RESULTS: We found that the hepatic transcriptomic profile during steatohepatitis mirrors the dynamics of recruited bone marrow-derived monocytes that already acquire increased expression of Trem2 in the circulation. Increased Trem2 expression was reflected by elevated levels of systemic soluble TREM2 in mice and humans with NASH. In addition, soluble TREM2 levels were superior to traditionally used laboratory parameters for distinguishing between different fatty liver disease stages in two separate clinical cohorts. Spatial transcriptomics revealed that TREM2+ macrophages localize to sites of hepatocellular damage, inflammation and fibrosis in the steatotic liver. Finally, using multiple murine models and in vitro experiments, we demonstrate that hematopoietic Trem2 deficiency causes defective lipid handling and extracellular matrix remodeling, resulting in exacerbated steatohepatitis, cell death and fibrosis. CONCLUSIONS: Our study highlights the functional properties of bone marrow-derived TREM2+ macrophages and implies the clinical relevance of systemic soluble TREM2 levels in the context of NASH. LAY SUMMARY: Our study defines the origin and function of macrophages (a type of immune cell) that are present in the liver and express a specific protein called TREM2. We find that these cells have an important role in protecting against non-alcoholic steatohepatitis (a progressive form of fatty liver disease). We also show that the levels of soluble TREM2 in the blood could serve as a circulating marker of non-alcoholic fatty liver disease.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Modelos Animais de Doenças , Humanos , Lipídeos , Fígado/patologia , Cirrose Hepática/complicações , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
6.
Knee Surg Sports Traumatol Arthrosc ; 30(4): 1169-1179, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35190881

RESUMO

PURPOSE: Neuromuscular training (NMT) is effective at reducing football injuries. The purpose of this study was to document the use of NMT to prevent anterior cruciate ligament injuries and lateral ankle sprains in adult amateur football and to identify barriers for using NMT. METHODS: A preseason and in-season online survey was completed by players and coaches of 164 football teams. The survey contained questions concerning injury history, type and frequency of NMT, and barriers when NMT was not used. RESULTS: A total of 2013 players (40% female) and 180 coaches (10% female) completed the preseason survey, whereas 1253 players and 140 coaches completed the in-season survey. Thirty-four percent (preseason) to 21% (in-season) of players used NMT, but only 8% (preseason) to 5% (in-season) performed adequate NMT (i.e. both balance and plyometric exercises, at least twice per week). In the subpopulation of players with an injury history, 12% (preseason) and 7% (in-season) performed adequate NMT. With respect to the coaches, only 5% (preseason) and 2% (in-season) implemented adequate NMT. Most important barriers for using NMT for both players and coaches were a lack of belief in its effectiveness, a lack of knowledge, the belief that stretching is sufficient, and not feeling the need for it. CONCLUSION: Most amateur football teams do not implement essential components of NMT. The results highlight the urgent need for developing strategies to enhance the adequate use of NMT in amateur football. LEVEL OF EVIDENCE: II.


Assuntos
Traumatismos do Tornozelo , Lesões do Ligamento Cruzado Anterior , Traumatismos em Atletas , Futebol , Adulto , Feminino , Humanos , Masculino , Traumatismos do Tornozelo/prevenção & controle , Lesões do Ligamento Cruzado Anterior/prevenção & controle , Traumatismos em Atletas/prevenção & controle , Futebol/lesões
7.
Nat Commun ; 12(1): 7172, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887405

RESUMO

Complement receptor of immunoglobulin superfamily (CRIg) is expressed on liver macrophages and directly binds complement component C3b or Gram-positive bacteria to mediate phagocytosis. CRIg plays important roles in several immune-mediated diseases, but it is not clear how its pathogen recognition and phagocytic functions maintain homeostasis and prevent disease. We previously associated cytolysin-positive Enterococcus faecalis with severity of alcohol-related liver disease. Here, we demonstrate that CRIg is reduced in liver tissues from patients with alcohol-related liver disease. CRIg-deficient mice developed more severe ethanol-induced liver disease than wild-type mice; disease severity was reduced with loss of toll-like receptor 2. CRIg-deficient mice were less efficient than wild-type mice at clearing Gram-positive bacteria such as Enterococcus faecalis that had translocated from gut to liver. Administration of the soluble extracellular domain CRIg-Ig protein protected mice from ethanol-induced steatohepatitis. Our findings indicate that ethanol impairs hepatic clearance of translocated pathobionts, via decreased hepatic CRIg, which facilitates progression of liver disease.


Assuntos
Enterococcus faecalis/imunologia , Infecções por Bactérias Gram-Positivas/imunologia , Hepatopatias Alcoólicas/imunologia , Macrófagos/imunologia , Receptores de Complemento 3b/imunologia , Receptores de Complemento/imunologia , Animais , Translocação Bacteriana , Complemento C3b/imunologia , Enterococcus faecalis/fisiologia , Etanol/efeitos adversos , Feminino , Trato Gastrointestinal/microbiologia , Infecções por Bactérias Gram-Positivas/genética , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/microbiologia , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Complemento/deficiência , Receptores de Complemento/genética , Receptores de Complemento 3b/genética
8.
Nature ; 597(7874): 92-96, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34433968

RESUMO

Atherosclerotic cardiovascular disease causes heart attacks and strokes, which are the leading causes of mortality worldwide1. The formation of atherosclerotic plaques is initiated when low-density lipoproteins bind to heparan-sulfate proteoglycans (HSPGs)2 and become trapped in the subendothelial space of large and medium size arteries, which leads to chronic inflammation and remodelling of the artery wall2. A proliferation-inducing ligand (APRIL) is a cytokine that binds to HSPGs3, but the physiology of this interaction is largely unknown. Here we show that genetic ablation or antibody-mediated depletion of APRIL aggravates atherosclerosis in mice. Mechanistically, we demonstrate that APRIL confers atheroprotection by binding to heparan sulfate chains of heparan-sulfate proteoglycan 2 (HSPG2), which limits the retention of low-density lipoproteins, accumulation of macrophages and formation of necrotic cores. Indeed, antibody-mediated depletion of APRIL in mice expressing heparan sulfate-deficient HSPG2 had no effect on the development of atherosclerosis. Treatment with a specific anti-APRIL antibody that promotes the binding of APRIL to HSPGs reduced experimental atherosclerosis. Furthermore, the serum levels of a form of human APRIL protein that binds to HSPGs, which we termed non-canonical APRIL (nc-APRIL), are associated independently of traditional risk factors with long-term cardiovascular mortality in patients with atherosclerosis. Our data reveal properties of APRIL that have broad pathophysiological implications for vascular homeostasis.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Proteoglicanas de Heparan Sulfato/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Antígeno de Maturação de Linfócitos B/metabolismo , Sítios de Ligação , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/mortalidade , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/sangue , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/deficiência
9.
Antioxidants (Basel) ; 10(1)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477615

RESUMO

As a mediator between lipid metabolism dysfunction, oxidative stress and inflammation, oxidized low-density lipoprotein (oxLDL) is a promising therapeutical target in a wide range of metabolic diseases. In mice, pneumococcal immunization increases anti-phosphorylcholine and oxLDL antibody levels, and reduces atherosclerosis, non-alcoholic steatohepatitis and Niemann-Pick disease burden. These findings suggest that pneumococcal vaccination may be a useful preventive and therapeutical strategy in metabolic disease patients. In this pilot clinical trial, our aim was to determine whether the administration of a pneumococcal vaccine increases anti-phosphorylcholine and anti-oxLDL antibody levels in metabolic disease patients. The following patients were enrolled: four patients with familial partial lipodystrophy (all women, mean age 32 years old); three familial hypercholesterolemia patients (one girl, two boys; mean age 13 years); and two Niemann-Pick type B (NP-B) patients (two men, mean age 37.5 years old). Participants received one active dose of a 13-valent conjugated pneumococcal vaccine (Prevenar 13) and were followed-up for four weeks. Four weeks after Prevenar 13 vaccination, no differences were observed in patients' levels of anti-oxLDL IgM or IgG antibodies. In addition, we observed a reduction in anti-phosphorylcholine (anti-PC) IgM antibody levels, whereas no differences were observed in anti-PC IgG antibody titers. These findings indicate that Prevenar 13 vaccination does not induce an immune response against oxLDL in patients with metabolic diseases. Therefore, Prevenar 13 is not suited to target the metabolic disruptor and pro-inflammatory mediator oxLDL in patients.

10.
Front Cardiovasc Med ; 8: 824481, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35083304

RESUMO

The prevalence of non-alcoholic fatty liver disease (NAFLD), ranging from simple steatosis to inflammatory steatohepatitis (NASH) and cirrhosis, continues to rise, making it one of the major chronic liver diseases and indications for liver transplantation worldwide. The pathological processes underlying NAFLD not only affect the liver but are also likely to have systemic effects. In fact, growing evidence indicates that patients with NAFLD are at increased risk for developing atherosclerosis. Indeed, cardiovascular complications are the leading cause of mortality in NAFLD patients. Here, we aim to address common pathophysiological molecular pathways involved in chronic fatty liver disease and atherosclerosis. In particular, we focus on the role of oxidized lipids and the formation of oxidation-specific epitopes, which are important targets of host immunity. Acting as metabolic danger signals, they drive pro-inflammatory processes and thus contribute to disease progression. Finally, we summarize encouraging studies indicating that oxidized lipids are promising immunological targets to improve intervention strategies for NAFLD and potentially limit the risk of developing atherosclerosis.

11.
Front Endocrinol (Lausanne) ; 11: 607011, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362721

RESUMO

An improper balance between the production and elimination of intracellular reactive oxygen species causes increased oxidative stress. Consequently, DNA, RNA, proteins, and lipids are irreversibly damaged, leading to molecular modifications that disrupt normal function. In particular, the peroxidation of lipids in membranes or lipoproteins alters lipid function and promotes formation of neo-epitopes, such as oxidation-specific epitopes (OSEs), which are found to be present on (lipo)proteins, dying cells, and extracellular vesicles. Accumulation of OSEs and recognition of OSEs by designated pattern recognition receptors on immune cells or soluble effectors can contribute to the development of chronic inflammatory diseases. In line, recent studies highlight the involvement of modified lipids and OSEs in different stages of the spectrum of non-alcoholic fatty liver disease (NAFLD), including inflammatory non-alcoholic steatohepatitis (NASH), fibrosis, and hepatocellular carcinoma. Targeting lipid peroxidation products shows high potential in the search for novel, better therapeutic strategies for NASH.


Assuntos
Epitopos/genética , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Oxirredução , Animais , Humanos , Peroxidação de Lipídeos/genética , Estresse Oxidativo/genética
12.
J Gastroenterol ; 54(3): 209-217, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30392013

RESUMO

Alterations of gut microbes play a role in the pathogenesis and progression of many disorders including liver and gastrointestinal diseases. Both qualitative and quantitative changes in gut microbiota have been associated with liver disease. Intestinal dysbiosis can disrupt the integrity of the intestinal barrier leading to pathological bacterial translocation and the initiation of an inflammatory response in the liver. In order to sustain symbiosis and protect from pathological bacterial translocation, antimicrobial proteins (AMPs) such as a-defensins and C-type lectins are expressed in the gastrointestinal tract. In this review, we provide an overview of the role of AMPs in different chronic liver disease such as alcoholic steatohepatitis, non-alcoholic fatty liver disease, and cirrhosis. In addition, potential approaches to modulate the function of AMPs and prevent bacterial translocation are discussed.


Assuntos
Proteínas de Bactérias/fisiologia , Disbiose/microbiologia , Microbioma Gastrointestinal/fisiologia , Intestinos/microbiologia , Hepatopatias/prevenção & controle , Hepatopatias/fisiopatologia , Translocação Bacteriana/fisiologia , Defensinas/fisiologia , Disbiose/fisiopatologia , Fígado Gorduroso Alcoólico/microbiologia , Fígado Gorduroso Alcoólico/fisiopatologia , Fígado Gorduroso Alcoólico/prevenção & controle , Humanos , Imunidade Inata/fisiologia , Intestinos/fisiopatologia , Lectinas Tipo C/fisiologia , Cirrose Hepática/microbiologia , Cirrose Hepática/fisiopatologia , Cirrose Hepática/prevenção & controle , Hepatopatias/microbiologia , Hepatopatia Gordurosa não Alcoólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Simbiose/fisiologia
13.
Gut ; 68(8): 1504-1515, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30448775

RESUMO

OBJECTIVE: Antimicrobial C-type lectin regenerating islet-derived 3 gamma (REG3G) is suppressed in the small intestine during chronic ethanol feeding. Our aim was to determine the mechanism that underlies REG3G suppression during experimental alcoholic liver disease. DESIGN: Interleukin 22 (IL-22) regulates expression of REG3G. Therefore, we investigated the role of IL-22 in mice subjected to chronic-binge ethanol feeding (NIAAA model). RESULTS: In a mouse model of alcoholic liver disease, we found that type 3 innate lymphoid cells produce lower levels of IL-22. Reduced IL-22 production was the result of ethanol-induced dysbiosis and lower intestinal levels of indole-3-acetic acid (IAA), a microbiota-derived ligand of the aryl hydrocarbon receptor (AHR), which regulates expression of IL-22. Importantly, faecal levels of IAA were also found to be lower in patients with alcoholic hepatitis compared with healthy controls. Supplementation to restore intestinal levels of IAA protected mice from ethanol-induced steatohepatitis by inducing intestinal expression of IL-22 and REG3G, which prevented translocation of bacteria to liver. We engineered Lactobacillus reuteri to produce IL-22 (L. reuteri/IL-22) and fed them to mice along with the ethanol diet; these mice had reduced liver damage, inflammation and bacterial translocation to the liver compared with mice fed an isogenic control strain and upregulated expression of REG3G in intestine. However, L. reuteri/IL-22 did not reduce ethanol-induced liver disease in Reg3g-/- mice. CONCLUSION: Ethanol-associated dysbiosis reduces levels of IAA and activation of the AHR to decrease expression of IL-22 in the intestine, leading to reduced expression of REG3G; this results in bacterial translocation to the liver and steatohepatitis. Bacteria engineered to produce IL-22 induce expression of REG3G to reduce ethanol-induced steatohepatitis.


Assuntos
Disbiose , Etanol , Microbioma Gastrointestinal/fisiologia , Interleucinas/imunologia , Intestino Delgado/imunologia , Limosilactobacillus reuteri/imunologia , Hepatopatias Alcoólicas , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Modelos Animais de Doenças , Disbiose/complicações , Disbiose/etiologia , Disbiose/imunologia , Etanol/efeitos adversos , Etanol/metabolismo , Imunidade Inata , Ácidos Indolacéticos/metabolismo , Inflamação/metabolismo , Hepatopatias Alcoólicas/imunologia , Hepatopatias Alcoólicas/microbiologia , Hepatopatias Alcoólicas/terapia , Camundongos , Camundongos Knockout , Proteínas Associadas a Pancreatite/imunologia , Receptores de Hidrocarboneto Arílico/metabolismo , Interleucina 22
14.
Front Immunol ; 9: 3089, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30666257

RESUMO

Niemann-Pick type C1 (NPC1) disease is caused by a deleterious mutation in the Npc1 gene, causing lysosomal accumulation of unesterified cholesterol and sphingolipids. Consequently, NPC1 disease patients suffer from severe neurovisceral symptoms which, in the absence of effective treatments, result in premature death. NPC1 disease patients display increased plasma levels of cholesterol oxidation products such as those enriched in oxidized low-density lipoprotein (oxLDL), a pro-inflammatory mediator. While it has been shown that inflammation precedes and exacerbates symptom severity in NPC1 disease, it is unclear whether oxLDL contributes to NPC1 disease progression. In this study, we investigated the effects of increasing anti-oxLDL IgM autoantibodies on systemic and neurological symptoms in an NPC1 disease mouse model. For this purpose, Npc1nih mice were immunized with heat-inactivated S. pneumoniae, an immunogen which elicits an IgM autoantibody-mediated immune response against oxLDL. Npc1nih mice injected with heat-inactivated pneumococci displayed an improved hepatic phenotype, including liver lipid accumulation and inflammation. In addition, regression of motor skills was delayed in immunized Npc1nih . In line with these results, brain analyses showed an improved cerebellar phenotype and neuroinflammation in comparison with control-treated subjects. This study highlights the potential of the pneumococcal immunization as a novel therapeutical approach in NPC1 disease. Future research should investigate whether implementation of this therapy can improve life span and quality of life of NPC1 disease patients.


Assuntos
Antígenos de Bactérias/imunologia , Imunização/métodos , Fígado/metabolismo , Destreza Motora , Doença de Niemann-Pick Tipo C/imunologia , Streptococcus pneumoniae/imunologia , Análise de Variância , Animais , Anticorpos Antibacterianos/sangue , Autoanticorpos/sangue , Colesterol/metabolismo , Modelos Animais de Doenças , Feminino , Genótipo , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Peptídeos e Proteínas de Sinalização Intracelular , Lipoproteínas LDL/imunologia , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação , Proteína C1 de Niemann-Pick , Proteínas/genética , Células de Purkinje/metabolismo , Triglicerídeos/metabolismo
15.
J Ultrasound Med ; 37(4): 921-933, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28990215

RESUMO

OBJECTIVES: To investigate the utility of ultrasonic (US) perfluorohexane (PFH)-loaded monocyte imaging for detection of liver inflammation in fatty liver disease. METHODS: C57Bl6 mice were injected intraperitoneally with tumor necrosis factor α and assessed by US PFH-loaded monocyte imaging 3 hours later. Echogenic monocytes were injected intravenously, leading to a transient increase in liver tissue intensity on a US perfusion scan. The contrast wash-out time constant was hypothesized to reflect the degree of inflammation. Next, we evaluated US PFH-loaded monocyte imaging in Ldlr-/- mice fed a 1-week high-fat/high-cholesterol diet as model for early developing nonalcoholic steatohepatitis. Adjunct analyses included tissue markers of liver inflammation. RESULTS: Tumor necrosis factor α-injected mice showed a reduced wash-out time constant (mean ± SEM, 0.013 ± 0.003; n = 8) compared to controls (0.054 ± 0.009; n = 7; P = .0006), indicative of increased inflammatory adhesion molecule expression on the endothelium. The Ldlr-/- mice fed the high-fat/high-cholesterol diet showed liver inflammation, as reflected by increased (3- to 4-fold) infiltration of inflammatory cells and increased (3- to 4-fold) gene expression of tumor necrosis factor α, integrin αM, intracellular adhesion molecule, and vascular cell adhesion molecule. However, in these mice, no difference was detected in the wash-out time constant as assessed by US PFH-loaded monocyte imaging (high-fat/high-cholesterol, 0.050 ± 0.017; n = 5; chow, 0.048 ± 0.006; n = 6; P = .91). CONCLUSIONS: Our results indicate that US PFH-loaded monocyte imaging is able to detect vascularly expressed inflammatory adhesion molecules in the mouse liver on direct endothelial stimulation. However, in our mouse model of early developing nonalcoholic steatohepatitis, we did not detect inflammation by this method, which may suggest that the time-dependent relationship between parenchymal and endothelial inflammation remains a fundamental issue to be addressed.


Assuntos
Fluorocarbonos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Ultrassonografia/métodos , Animais , Modelos Animais de Doenças , Fígado/diagnóstico por imagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos , Reprodutibilidade dos Testes
17.
Sci Rep ; 7(1): 12550, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970532

RESUMO

Despite the consistent rise of non-alcoholic steatohepatitis (NASH) worldwide, the mechanisms that govern the inflammatory aspect of this disease remain unknown. Previous research showed an association between hepatic inflammation and lysosomal lipid accumulation in blood-derived hepatic macrophages. Additionally, in vitro findings indicated that lipids, specifically derived from the oxidized low-density lipoprotein (oxLDL) particle, are resistant to removal from lysosomes. On this basis, we investigated whether lysosomal lipid accumulation in blood-derived hepatic macrophages is causally linked to hepatic inflammation and assessed to what extent increasing anti-oxLDL IgM autoantibodies can affect this mechanism. By creating a proof-of-concept mouse model, we demonstrate a causal role for lysosomal lipids in blood-derived hepatic macrophages in mediating hepatic inflammation and initiation of fibrosis. Furthermore, our findings show that increasing anti-oxLDL IgM autoantibody levels reduces inflammation. Hence, therapies aimed at improving lipid-induced lysosomal dysfunction and blocking oxLDL-formation deserve further investigation in the context of NASH.


Assuntos
Inflamação/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Autoanticorpos/biossíntese , Autoanticorpos/imunologia , Autoanticorpos/uso terapêutico , Colesterol/metabolismo , Modelos Animais de Doenças , Humanos , Imunoglobulina M/biossíntese , Imunoglobulina M/imunologia , Inflamação/sangue , Inflamação/complicações , Inflamação/terapia , Células de Kupffer/metabolismo , Lipídeos/sangue , Lipoproteínas LDL/antagonistas & inibidores , Lipoproteínas LDL/imunologia , Fígado/metabolismo , Fígado/patologia , Lisossomos/metabolismo , Macrófagos/patologia , Camundongos , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/terapia
18.
Sci Rep ; 7(1): 3494, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28615690

RESUMO

Due to the obesity epidemic, non-alcoholic steatohepatitis (NASH) is a prevalent liver disease, characterized by fat accumulation and inflammation of the liver. However, due to a lack of mechanistic insight, diagnostic and therapeutic options for NASH are poor. Recent evidence has indicated cathepsin D (CTSD), a lysosomal enzyme, as a marker for NASH. Here, we investigated the function of CTSD in NASH by using an in vivo and in vitro model. In addition to diminished hepatic inflammation, inhibition of CTSD activity dramatically improved lipid metabolism, as demonstrated by decreased plasma and liver levels of both cholesterol and triglycerides. Mechanistically, CTSD inhibition resulted in an increased conversion of cholesterol into bile acids and an elevated excretion of bile acids via the feces, indicating that CTSD influences lipid metabolism. Consistent with these findings, treating Wt BMDMs with PepA in vitro showed a similar decrease in inflammation and an analogous effect on cholesterol metabolism. CONCLUSION: CTSD is a key player in the development of hepatic inflammation and dyslipidemia. Therefore, aiming at the inhibition of the activity of CTSD may lead to novel treatments to combat NASH.


Assuntos
Catepsina D/metabolismo , Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica/enzimologia , Animais , Modelos Animais de Doenças , Feminino , Inflamação/complicações , Inflamação/enzimologia , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/complicações
19.
Blood ; 130(4): 542-553, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28572286

RESUMO

The symbiotic gut microbiota play pivotal roles in host physiology and the development of cardiovascular diseases, but the microbiota-triggered pattern recognition signaling mechanisms that impact thrombosis are poorly defined. In this article, we show that germ-free (GF) and Toll-like receptor-2 (Tlr2)-deficient mice have reduced thrombus growth after carotid artery injury relative to conventionally raised controls. GF Tlr2-/- and wild-type (WT) mice were indistinguishable, but colonization with microbiota restored a significant difference in thrombus growth between the genotypes. We identify reduced plasma levels of von Willebrand factor (VWF) and reduced VWF synthesis, specifically in hepatic endothelial cells, as a critical factor that is regulated by gut microbiota and determines thrombus growth in Tlr2-/- mice. Static platelet aggregate formation on extracellular matrix was similarly reduced in GF WT, Tlr2-/- , and heterozygous Vwf+/- mice that are all characterized by a modest reduction in plasma VWF levels. Defective platelet matrix interaction can be restored by exposure to WT plasma or to purified VWF depending on the VWF integrin binding site. Moreover, administration of VWF rescues defective thrombus growth in Tlr2-/- mice in vivo. These experiments delineate an unexpected pathway in which microbiota-triggered TLR2 signaling alters the synthesis of proadhesive VWF by the liver endothelium and favors platelet integrin-dependent thrombus growth.


Assuntos
Microbioma Gastrointestinal , Fígado/metabolismo , Transdução de Sinais , Trombose/metabolismo , Receptor 2 Toll-Like/metabolismo , Fator de von Willebrand/biossíntese , Animais , Plaquetas/metabolismo , Plaquetas/patologia , Vida Livre de Germes , Fígado/patologia , Camundongos , Camundongos Knockout , Agregação Plaquetária/genética , Trombose/genética , Trombose/patologia , Receptor 2 Toll-Like/genética , Fator de von Willebrand/genética
20.
Hepatology ; 65(4): 1181-1195, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27981604

RESUMO

Diet-related health issues such as nonalcoholic fatty liver disease and cardiovascular disorders are known to have a major inflammatory component. However, the exact pathways linking diet-induced changes (e.g., hyperlipidemia) and the ensuing inflammation have remained elusive so far. We identified biological processes related to innate immunity and oxidative stress as prime response pathways in livers of low-density lipoprotein receptor-deficient mice on a Western-type diet using RNA sequencing and in silico functional analyses of transcriptome data. The observed changes were independent of the presence of microbiota and thus indicative of a role for sterile triggers. We further show that malondialdehyde (MDA) epitopes, products of lipid peroxidation and markers for enhanced oxidative stress, are detectable in hepatic inflammation predominantly on dying cells and stimulate cytokine secretion as well as leukocyte recruitment in vitro and in vivo. MDA-induced cytokine secretion in vitro was dependent on the presence of the scavenger receptors CD36 and MSR1. Moreover, in vivo neutralization of endogenously generated MDA epitopes by intravenous injection of a specific MDA antibody results in decreased hepatic inflammation in low-density lipoprotein receptor-deficient mice on a Western-type diet. CONCLUSION: Accumulation of MDA epitopes plays a major role during diet-induced hepatic inflammation and can be ameliorated by administration of an anti-MDA antibody. (Hepatology 2017;65:1181-1195).


Assuntos
Dieta Ocidental , Epitopos/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Hipercolesterolemia/patologia , Malondialdeído/metabolismo , Análise de Variância , Animais , Biópsia por Agulha , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Epitopos/imunologia , Fígado Gorduroso/imunologia , Feminino , Hipercolesterolemia/fisiopatologia , Imunidade Inata , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Peroxidação de Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Microbiota , Estresse Oxidativo , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...