Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Mol Biol Rev ; 86(4): e0012421, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36165780

RESUMO

Laboratory-generated hybrids between phage λ and related phages played a seminal role in establishment of the λ model system, which, in turn, served to develop many of the foundational concepts of molecular biology, including gene structure and control. Important λ hybrids with phages 21 and 434 were the earliest of such phages. To understand the biology of these hybrids in full detail, we determined the complete genome sequences of phages 21 and 434. Although both genomes are canonical members of the λ-like phage family, they both carry unsuspected bacterial virulence gene types not previously described in this group of phages. In addition, we determined the sequences of the hybrid phages λ imm21, λ imm434, and λ h434 imm21. These sequences show that the replacements of λ DNA by nonhomologous segments of 21 or 434 DNA occurred through homologous recombination in adjacent sequences that are nearly identical in the parental phages. These five genome sequences correct a number of errors in published sequence fragments of the 21 and 434 genomes, and they point out nine nucleotide differences from Sanger's original λ sequence that are likely present in most extant λ strains in laboratory use today. We discuss the historical importance of these hybrid phages in the development of fundamental tenets of molecular biology and in some of the earliest gene cloning vectors. The 434 and 21 genomes reinforce the conclusion that the genomes of essentially all natural λ-like phages are mosaics of sequence modules from a pool of exchangeable segments.


Assuntos
Bacteriófago lambda , Vigor Híbrido , Bacteriófago lambda/genética , Biologia Molecular
2.
Nucleic Acids Res ; 50(15): 8719-8732, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35947691

RESUMO

Many essential cellular processes rely on substrate rotation or translocation by a multi-subunit, ring-type NTPase. A large number of double-stranded DNA viruses, including tailed bacteriophages and herpes viruses, use a homomeric ring ATPase to processively translocate viral genomic DNA into procapsids during assembly. Our current understanding of viral DNA packaging comes from three archetypal bacteriophage systems: cos, pac and phi29. Detailed mechanistic understanding exists for pac and phi29, but not for cos. Here, we reconstituted in vitro a cos packaging system based on bacteriophage HK97 and provided a detailed biochemical and structural description. We used a photobleaching-based, single-molecule assay to determine the stoichiometry of the DNA-translocating ATPase large terminase. Crystal structures of the large terminase and DNA-recruiting small terminase, a first for a biochemically defined cos system, reveal mechanistic similarities between cos and pac systems. At the same time, mutational and biochemical analyses indicate a new regulatory mechanism for ATPase multimerization and coordination in the HK97 system. This work therefore establishes a framework for studying the evolutionary relationships between ATP-dependent DNA translocation machineries in double-stranded DNA viruses.


Assuntos
Adenosina Trifosfatases , Montagem de Vírus , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/química , Montagem de Vírus/genética , Proteínas Virais/genética , Proteínas Virais/química , Empacotamento do DNA , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/química , DNA Viral/genética , DNA Viral/química
3.
Microbiol Resour Announc ; 11(5): e0012022, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412353

RESUMO

Recombinational hybrids between phage λ and its relatives were instrumental in the beginnings of molecular biology. Here, we report the complete genome sequences of lambdoid phages 21 and 434 and three of their λ hybrids. In addition, we describe 434B, where the entire lysis gene region was replaced by cryptic prophage sequences.

4.
G3 (Bethesda) ; 11(1)2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33561243

RESUMO

Bacteriophage L, a P22-like phage of Salmonella enterica sv Typhimurium LT2, was important for definition of mosaic organization of the lambdoid phage family and for characterization of restriction-modification systems of Salmonella. We report the complete genome sequences of bacteriophage L cI-40 13-am43 and L cII-101; the deduced sequence of wildtype L is 40,633 bp long with a 47.5% GC content. We compare this sequence with those of P22 and ST64T, and predict 72 Coding Sequences, 2 tRNA genes and 14 intergenic rho-independent transcription terminators. The overall genome organization of L agrees with earlier genetic and physical evidence; for example, no secondary immunity region (immI: ant, arc) or known genes for superinfection exclusion (sieA and sieB) are present. Proteomic analysis confirmed identification of virion proteins, along with low levels of assembly intermediates and host cell envelope proteins. The genome of L is 99.9% identical at the nucleotide level to that reported for phage ST64T, despite isolation on different continents ∼35 years apart. DNA modification by the epigenetic regulator Dam is generally incomplete. Dam modification is also selectively missing in one location, corresponding to the P22 phase-variation-sensitive promoter region of the serotype-converting gtrABC operon. The number of sites for SenLTIII (StySA) action may account for stronger restriction of L (13 sites) than of P22 (3 sites).


Assuntos
Bacteriófagos , Salmonella typhimurium , Enzimas de Restrição-Modificação do DNA , Proteômica , Sorogrupo
5.
J Virol ; 93(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31462565

RESUMO

We present the genome sequences of Salmonella enterica tailed phages Sasha, Sergei, and Solent. These phages, along with Salmonella phages 9NA, FSL_SP-062, and FSL_SP-069 and the more distantly related Proteus phage PmiS-Isfahan, have similarly sized genomes of between 52 and 57 kbp in length that are largely syntenic. Their genomes also show substantial genome mosaicism relative to one another, which is common within tailed phage clusters. Their gene content ranges from 80 to 99 predicted genes, of which 40 are common to all seven and form the core genome, which includes all identifiable virion assembly and DNA replication genes. The total number of gene types (pangenome) in the seven phages is 176, and 59 of these are unique to individual phages. Their core genomes are much more closely related to one another than to the genome of any other known phage, and they comprise a well-defined cluster within the family Siphoviridae To begin to characterize this group of phages in more experimental detail, we identified the genes that encode the major virion proteins and examined the DNA packaging of the prototypic member, phage 9NA. We show that it uses a pac site-directed headful packaging mechanism that results in virion chromosomes that are circularly permuted and about 13% terminally redundant. We also show that its packaging series initiates with double-stranded DNA cleavages that are scattered across a 170-bp region and that its headful measuring device has a precision of ±1.8%.IMPORTANCE The 9NA-like phages are clearly highly related to each other but are not closely related to any other known phage type. This work describes the genomes of three new 9NA-like phages and the results of experimental analysis of the proteome of the 9NA virion and DNA packaging into the 9NA phage head. There is increasing interest in the biology of phages because of their potential for use as antibacterial agents and for their ecological roles in bacterial communities. 9NA-like phages that infect two bacterial genera have been identified to date, and related phages infecting additional Gram-negative bacterial hosts are likely to be found in the future. This work provides a foundation for the study of these phages, which will facilitate their study and potential use.


Assuntos
Empacotamento do DNA/genética , Fagos de Salmonella/genética , Salmonella/virologia , Empacotamento do DNA/fisiologia , Replicação do DNA , DNA Viral/genética , Genoma/genética , Genoma Viral/genética , Genômica/métodos , Filogenia , Salmonella/genética , Salmonella/metabolismo , Siphoviridae/genética , Siphoviridae/metabolismo , Proteínas Virais/genética , Vírion/genética
6.
mBio ; 8(5)2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042498

RESUMO

Large icosahedral viruses that infect bacteria represent an extreme of the coevolution of capsids and the genomes they accommodate. One subset of these large viruses is the jumbophages, tailed phages with double-stranded DNA genomes of at least 200,000 bp. We explored the mechanism leading to increased capsid and genome sizes by characterizing structures of several jumbophage capsids and the DNA packaged within them. Capsid structures determined for six jumbophages were consistent with the canonical phage HK97 fold, and three had capsid geometries with novel triangulation numbers (T=25, T=28, and T=52). Packaged DNA (chromosome) sizes were larger than the genome sizes, indicating that all jumbophages use a head-full DNA packaging mechanism. For two phages (PAU and G), the sizes appeared very much larger than their genome length. We used two-dimensional DNA gel electrophoresis to show that these two DNAs migrated abnormally due to base modifications and to allow us to calculate their actual chromosome sizes. Our results support a ratchet model of capsid and genome coevolution whereby mutations lead to increased capsid volume and allow the acquisition of additional genes. Once the added genes and larger capsid are established, mutations that restore the smaller size are disfavored.IMPORTANCE A large family of viruses share the same fold of the capsid protein as bacteriophage HK97, a virus that infects bacteria. Members of this family use different numbers of the capsid protein to build capsids of different sizes. Here, we examined the structures of extremely large capsids and measured their DNA content relative to the sequenced genome lengths, aiming to understand the process that increases size. We concluded that mutational changes leading to larger capsids become locked in by subsequent changes to the genome organization.


Assuntos
Bacteriófagos/genética , Bacteriófagos/ultraestrutura , Evolução Biológica , Capsídeo/ultraestrutura , Genoma Viral , DNA Viral/genética , Eletroforese em Gel Bidimensional , Mutação
7.
J Mol Biol ; 429(16): 2474-2489, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28705762

RESUMO

Viruses build icosahedral capsids of specific size and shape by regulating the spatial arrangement of the hexameric and pentameric protein capsomers in the growing shell during assembly. In the T=7 capsids of Escherichia coli bacteriophage HK97 and other phages, 60 capsomers are hexons, while the rest are pentons that are correctly positioned during assembly. Assembly of the HK97 capsid to the correct size and shape has been shown to depend on specific ionic contacts between capsomers. We now describe additional ionic interactions within capsomers that also regulate assembly. Each is between the long hairpin, the "E-loop," that extends from one subunit to the adjacent subunit within the same capsomer. Glutamate E153 on the E-loop and arginine R210 on the adjacent subunit's backbone alpha-helix form salt bridges in hexamers and pentamers. Mutations that disrupt these salt bridges were lethal for virus production, because the mutant proteins assembled into tubes or sheets instead of capsids. X-ray structures show that the E153-R210 links are flexible and maintained during maturation despite radical changes in capsomer shape. The E153-R210 links appear to form early in assembly to enable capsomers to make programmed changes in their shape during assembly. The links also prevent flattening of capsomers and premature maturation. Mutant phenotypes and modeling support an assembly model in which flexible E153-R210 links mediate capsomer shape changes that control where pentons are placed to create normal-sized capsids. The E-loop may be conserved in other systems in order to play similar roles in regulating assembly.


Assuntos
Proteínas do Capsídeo/metabolismo , Colífagos/fisiologia , Multimerização Proteica , Montagem de Vírus , Capsídeo/química , Capsídeo/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica
8.
Virology ; 506: 84-91, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28359902

RESUMO

During maturation of the phage HK97 capsid, each of the 415 capsid subunits forms covalent bonds to neighboring subunits, stabilizing the capsid. Crosslinking is catalyzed not by a separate enzyme but by subunits of the assembled capsid in response to conformational rearrangements during maturation. This report investigates the catalytic mechanism. Earlier work established that the crosslinks are isopeptide (amide) bonds between side chains of a lysine on one subunit and an asparagine on another subunit, aided by a catalytic glutamate on a third subunit. The mature capsid structure suggests that the reaction may be facilitated by the arrival of a valine with the lysine to complete a hydrophobic pocket surrounding the glutamate, lysine and asparagine. We show that this valine has an essential role for efficient crosslinking, and that any of six other amino acids can successfully substitute for valine. Evidently none of the remaining 13 amino acids will work.


Assuntos
Bacteriófagos/química , Capsídeo/química , Bacteriófagos/fisiologia , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Modelos Moleculares , Montagem de Vírus
9.
J Mol Biol ; 428(1): 165-181, 2016 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-26616586

RESUMO

The 90-nm-diameter capsid of coliphage T5 is organized with T=13 icosahedral geometry and encloses a double-stranded DNA genome that measures 121kbp. Its assembly follows a path similar to that of phage HK97 but yielding a larger structure that includes 775 subunits of the major head protein, 12 subunits of the portal protein and 120 subunits of the decoration protein. As for phage HK97, T5 encodes the scaffold function as an N-terminal extension (∆-domain) to the major head protein that is cleaved by the maturation protease after assembly of the initial prohead I form and prior to DNA packaging and capsid expansion. Although the major head protein alone is sufficient to assemble capsid-like particles, the yield is poor and includes many deformed structures. Here we explore the role of both the portal and the protease in capsid assembly by generating constructs that include the major head protein and a combination of protease (wild type or an inactive mutant) and portal proteins and overexpressing them in Escherichia coli. Our results show that the inactive protease mutant acts to trigger assembly of the major head protein, probably through binding to the ∆-domain, while the portal protein regulates assembly into the correct T=13 geometry. A cryo-electron microscopy reconstruction of prohead I including inactivated protease reveals density projecting from the prohead interior surface toward its center that is compatible with the ∆-domain, as well as additional internal density that we assign as the inactivated protease. These results reveal complexity in T5 beyond that of the HK97 system.


Assuntos
Siphoviridae/fisiologia , Proteínas Virais/metabolismo , Montagem de Vírus , Microscopia Crioeletrônica , Análise Mutacional de DNA , Escherichia coli/genética , Escherichia coli/virologia , Siphoviridae/ultraestrutura , Proteínas Virais/genética
10.
Genome Announc ; 3(3)2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25953168

RESUMO

Det7 is a Myoviridae bacteriophage that gains entry into its Salmonella enterica serovar Typhimurium host cells by adsorbing to O-antigen polysaccharide. We report here the complete 157,498-bp sequence of its genome. Det7, together with its Vi01-like relatives, are distantly related to phage T4.

11.
Elife ; 4: e06416, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25919952

RESUMO

The bacteriophage population is large, dynamic, ancient, and genetically diverse. Limited genomic information shows that phage genomes are mosaic, and the genetic architecture of phage populations remains ill-defined. To understand the population structure of phages infecting a single host strain, we isolated, sequenced, and compared 627 phages of Mycobacterium smegmatis. Their genetic diversity is considerable, and there are 28 distinct genomic types (clusters) with related nucleotide sequences. However, amino acid sequence comparisons show pervasive genomic mosaicism, and quantification of inter-cluster and intra-cluster relatedness reveals a continuum of genetic diversity, albeit with uneven representation of different phages. Furthermore, rarefaction analysis shows that the mycobacteriophage population is not closed, and there is a constant influx of genes from other sources. Phage isolation and analysis was performed by a large consortium of academic institutions, illustrating the substantial benefits of a disseminated, structured program involving large numbers of freshman undergraduates in scientific discovery.


Assuntos
DNA Viral/genética , Variação Genética , Genoma Viral , Micobacteriófagos/genética , Filogenia , Pesquisa Biomédica/ética , Comportamento Cooperativo , Fluxo Gênico , Sequenciamento de Nucleotídeos em Larga Escala , Disseminação de Informação , Mosaicismo , Micobacteriófagos/classificação , Mycobacterium smegmatis/virologia , Filogeografia , Recursos Humanos
12.
Virology ; 479-480: 310-30, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25742714

RESUMO

Molecular genetic research on bacteriophage lambda carried out during its golden age from the mid-1950s to mid-1980s was critically important in the attainment of our current understanding of the sophisticated and complex mechanisms by which the expression of genes is controlled, of DNA virus assembly and of the molecular nature of lysogeny. The development of molecular cloning techniques, ironically instigated largely by phage lambda researchers, allowed many phage workers to switch their efforts to other biological systems. Nonetheless, since that time the ongoing study of lambda and its relatives has continued to give important new insights. In this review we give some relevant early history and describe recent developments in understanding the molecular biology of lambda's life cycle.


Assuntos
Bacteriófago lambda/genética , Bacteriófago lambda/fisiologia , Biologia Molecular/história , Biologia Molecular/tendências , História do Século XX , História do Século XXI , Biologia Molecular/métodos
13.
Genome Announc ; 3(1)2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25720684

RESUMO

Salmonella bacteriophage χ is a member of the Siphoviridae family that gains entry into its host cells by adsorbing to their flagella. We report the complete 59,578-bp sequence of the genome of phage χ, which together with its relatives, exemplifies a largely unexplored type of tailed bacteriophage.

14.
mBio ; 5(6): e02145, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25467442

RESUMO

UNLABELLED: Newly emerging human viruses such as Ebola virus, severe acute respiratory syndrome (SARS) virus, and HIV likely originate within an extant population of viruses in nonhuman hosts and acquire the ability to infect and cause disease in humans. Although several mechanisms preventing viral infection of particular hosts have been described, the mechanisms and constraints on viral host expansion are ill defined. We describe here mycobacteriophage Patience, a newly isolated phage recovered using Mycobacterium smegmatis mc(2)155 as a host. Patience has genomic features distinct from its M. smegmatis host, including a much lower GC content (50.3% versus 67.4%) and an abundance of codons that are rarely used in M. smegmatis. Nonetheless, it propagates well in M. smegmatis, and we demonstrate the use of mass spectrometry to show expression of over 75% of the predicted proteins, to identify new genes, to refine the genome annotation, and to estimate protein abundance. We propose that Patience evolved primarily among lower-GC hosts and that the disparities between its genomic profile and that of M. smegmatis presented only a minimal barrier to host expansion. Rapid adaptions to its new host include recent acquisition of higher-GC genes, expression of out-of-frame proteins within predicted genes, and codon selection among highly expressed genes toward the translational apparatus of its new host. IMPORTANCE: The mycobacteriophage Patience genome has a notably lower GC content (50.3%) than its Mycobacterium smegmatis host (67.4%) and has markedly different codon usage biases. The viral genome has an abundance of codons that are rare in the host and are decoded by wobble tRNA pairing, although the phage grows well and expression of most of the genes is detected by mass spectrometry. Patience thus has the genomic profile of a virus that evolved primarily in one type of host genetic landscape (moderate-GC bacteria) but has found its way into a distinctly different high-GC environment. Although Patience genes are ill matched to the host expression apparatus, this is of little functional consequence and has not evidently imposed a barrier to migration across the microbial landscape. Interestingly, comparison of expression levels and codon usage profiles reveals evidence of codon selection as the genome evolves and adapts to its new environment.


Assuntos
Genoma Viral , Micobacteriófagos/química , Micobacteriófagos/genética , Mycobacterium smegmatis/virologia , Proteoma/análise , Proteínas Virais/análise , Proteínas Virais/genética , Composição de Bases , Códon , Espectrometria de Massas , Micobacteriófagos/isolamento & purificação , Micobacteriófagos/fisiologia , Replicação Viral
15.
mBio ; 5(6): e02067, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25389177

RESUMO

UNLABELLED: As they mature, many capsids undergo massive conformational changes that transform their stability, reactivity, and capacity for DNA. In some cases, maturation proceeds via one or more intermediate states. These structures represent local minima in a rich energy landscape that combines contributions from subunit folding, association of subunits into capsomers, and intercapsomer interactions. We have used scanning calorimetry and cryo-electron microscopy to explore the range of capsid conformations accessible to bacteriophage HK97. To separate conformational effects from those associated with covalent cross-linking (a stabilization mechanism of HK97), a cross-link-incompetent mutant was used. The mature capsid Head I undergoes an endothermic phase transition at 60°C in which it shrinks by 7%, primarily through changes in its hexamer conformation. The transition is reversible, with a half-life of ~3 min; however, >50% of reverted capsids are severely distorted or ruptured. This observation implies that such damage is a potential hazard of large-scale structural changes such as those involved in maturation. Assuming that the risk is lower for smaller changes, this suggests a rationalization for the existence of metastable intermediates: that they serve as stepping stones that preserve capsid integrity as it switches between the radically different conformations of its precursor and mature states. IMPORTANCE: Large-scale conformational changes are widespread in virus maturation and infection processes. These changes are accompanied by the release of conformational free energy as the virion (or fusogenic glycoprotein) switches from a precursor state to its mature state. Each state corresponds to a local minimum in an energy landscape. The conformational changes in capsid maturation are so radical that the question arises of how maturing capsids avoid being torn apart. Offering proof of principle, severe damage is inflicted when a bacteriophage HK97 capsid reverts from the (nonphysiological) state that it enters when heated past 60 °C. We suggest that capsid proteins have been selected in part by the criterion of being able to avoid sustaining collateral damage as they mature. One way of achieving this---as with the HK97 capsid-involves breaking the overall transition down into several smaller steps in which the risk of damage is reduced.


Assuntos
Bacteriófagos/fisiologia , Capsídeo/metabolismo , Montagem de Vírus , Bacteriófagos/ultraestrutura , Calorimetria , Capsídeo/ultraestrutura , Microscopia Crioeletrônica
16.
Genome Announc ; 2(4)2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25146133

RESUMO

The virulent double-stranded DNA (dsDNA) bacteriophage 9NA infects Salmonella enterica serovar Typhimurium and has a long noncontractile tail. We report its complete 52,869-bp genome sequence. Phage 9NA and two closely related S. enterica serovar Newport phages represent a tailed phage type whose molecular lifestyle has not yet been studied in detail.

17.
Virology ; 456-457: 171-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24889236

RESUMO

The 102 residue N-terminal extension of the HK97 major capsid protein, the delta domain, is normally present during the assembly of immature HK97 procapsids, but it is removed during maturation like well-known internal scaffolding proteins of other tailed phages and herpesviruses. The delta domain also shares other unusual properties usually found in other viral and phage scaffolding proteins, including its location on the inside of the capsid, a high predicted and measured α-helical content, and an additional prediction for the ability to form parallel coiled-coils. Viral scaffolding proteins are essential for capsid assembly and phage viability, so we tested whether the HK97 delta domain was essential for capsid assembly. We studied the effects of deleting all or parts of the delta domain on capsid assembly and on complementation of capsid-protein-defective phage, and our results demonstrate that the delta domain is required for HK97 capsid assembly.


Assuntos
Bacteriófagos/fisiologia , Proteínas do Capsídeo/metabolismo , Montagem de Vírus , Bacteriófagos/genética , Proteínas do Capsídeo/genética , Análise Mutacional de DNA , Estrutura Terciária de Proteína , Deleção de Sequência
18.
J Mol Biol ; 426(10): 2112-29, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24657766

RESUMO

The G-loop is a 10-residue glycine-rich loop that protrudes from the surface of the mature bacteriophage HK97 capsid at the C-terminal end of the long backbone helix of major capsid protein subunits. The G-loop is essential for assembly, is conserved in related capsid and encapsulin proteins, and plays its role during HK97 capsid assembly by making crucial contacts between the hill-like hexamers and pentamers in precursor proheads. These contacts are not preserved in the flattened capsomers of the mature capsid. Aspartate 231 in each of the ~400 G-loops interacts with lysine 178 of the E-loop (extended loop) of a subunit on an adjacent capsomer. Mutations disrupting this interaction prevented correct assembly and, in some cases, induced abnormal assembly into tubes, or small, incomplete capsids. Assembly remained defective when D231 and K178 were replaced with larger charged residues or when their positions were exchanged. Second-site suppressors of lethal mutants containing substitution D231L replaced the ionic interaction with new interactions between neutral and hydrophobic residues of about the same size: D231L/K178V, D231L/K178I, and D231L/K178N. We conclude that it is not the charge but the size and shape of the side chains of residues 178 and 231 that are important. These two residues control the geometry of contacts between the E-loop and the G-loop, which apparently must be precisely spaced and oriented for correct assembly to occur. We present a model for how the G-loop could control HK97 assembly and identify G-loop-like protrusions in other capsid proteins that may play analogous roles.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/fisiologia , Siphoviridae/química , Siphoviridae/fisiologia , Montagem de Vírus , Sequência de Aminoácidos , Substituição de Aminoácidos , Ácido Aspártico/química , Capsídeo/química , Capsídeo/metabolismo , Ligação de Hidrogênio , Lisina/química , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas/genética
19.
J Virol ; 88(5): 2461-80, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24335314

RESUMO

UNLABELLED: Genomic analysis of a large set of phages infecting the common host Mycobacterium smegmatis mc(2)155 shows that they span considerable genetic diversity. There are more than 20 distinct types that lack nucleotide similarity with each other, and there is considerable diversity within most of the groups. Three newly isolated temperate mycobacteriophages, Bongo, PegLeg, and Rey, constitute a new group (cluster M), with the closely related phages Bongo and PegLeg forming subcluster M1 and the more distantly related Rey forming subcluster M2. The cluster M mycobacteriophages have siphoviral morphologies with unusually long tails, are homoimmune, and have larger than average genomes (80.2 to 83.7 kbp). They exhibit a variety of features not previously described in other mycobacteriophages, including noncanonical genome architectures and several unusual sets of conserved repeated sequences suggesting novel regulatory systems for both transcription and translation. In addition to containing transfer-messenger RNA and RtcB-like RNA ligase genes, their genomes encode 21 to 24 tRNA genes encompassing complete or nearly complete sets of isotypes. We predict that these tRNAs are used in late lytic growth, likely compensating for the degradation or inadequacy of host tRNAs. They may represent a complete set of tRNAs necessary for late lytic growth, especially when taken together with the apparent lack of codons in the same late genes that correspond to tRNAs that the genomes of the phages do not obviously encode. IMPORTANCE: The bacteriophage population is vast, dynamic, and old and plays a central role in bacterial pathogenicity. We know surprisingly little about the genetic diversity of the phage population, although metagenomic and phage genome sequencing indicates that it is great. Probing the depth of genetic diversity of phages of a common host, Mycobacterium smegmatis, provides a higher resolution of the phage population and how it has evolved. Three new phages constituting a new cluster M further expand the diversity of the mycobacteriophages and introduce novel features. As such, they provide insights into phage genome architecture, virion structure, and gene regulation at the transcriptional and translational levels.


Assuntos
Família Multigênica , Micobacteriófagos/classificação , Micobacteriófagos/genética , Mycobacterium smegmatis/virologia , RNA de Transferência/genética , RNA Viral , Composição de Bases , Sequência de Bases , Códon , Sequência Conservada , Ordem dos Genes , Tamanho do Genoma , Genoma Viral , Sequências Repetidas Invertidas , Lisogenia/genética , Micobacteriófagos/ultraestrutura , Fases de Leitura Aberta , Filogenia , RNA de Transferência/química , Sequências Repetitivas de Ácido Nucleico , Alinhamento de Sequência , Vírion/genética , Vírion/ultraestrutura , Montagem de Vírus/genética
20.
J Mol Biol ; 426(5): 1004-18, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-23911548

RESUMO

Bacteriophage λ makes two proteins with overlapping amino acid sequences that are essential for tail assembly. These two proteins, gpG and gpGT, are related by a programmed translational frameshift that is conserved among diverse phages and functions in λ to ensure that gpG and the frameshift product gpGT are made in a molar ratio of approximately 30:1. Although both proteins are required and must be present in the correct ratio for assembly of functional tails, neither is present in mature tails. During λ tail assembly, major tail protein gpV polymerizes to form a long tube whose length is controlled by the tape measure protein gpH. We show that the "G" domains of gpG and gpGT bind to all or parts of tail length tape measure protein gpH and that the "T" domain of gpGT binds to major tail shaft subunit gpV, and present a model for how gpG and gpGT chaperone gpH and direct the polymerization of gpV to form a tail of the correct length.


Assuntos
Bacteriófago lambda/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Proteínas da Cauda Viral/metabolismo , Vírion/metabolismo , Montagem de Vírus/fisiologia , Sequência de Aminoácidos , Bacteriófago lambda/genética , Eletroforese em Gel de Poliacrilamida , Modelos Moleculares , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...