Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 32(9): e4733, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37463013

RESUMO

Intrinsically disordered proteins (IDPs) are often multifunctional and frequently posttranslationally modified. Deleted in split hand/split foot 1 (Dss1-Sem1 in budding yeast) is a highly multifunctional IDP associated with a range of protein complexes. However, it remains unknown if the different functions relate to different modified states. In this work, we show that Schizosaccharomyces pombe Dss1 is a substrate for casein kinase 2 in vitro, and we identify three phosphorylated threonines in its linker region separating two known disordered ubiquitin-binding motifs. Phosphorylations of the threonines had no effect on ubiquitin-binding but caused a slight destabilization of the C-terminal α-helix and mediated a direct interaction with the forkhead-associated (FHA) domain of the RING-FHA E3-ubiquitin ligase defective in mitosis 1 (Dma1). The phosphorylation sites are not conserved and are absent in human Dss1. Sequence analyses revealed that the Txx(E/D) motif, which is important for phosphorylation and Dma1 binding, is not linked to certain branches of the evolutionary tree. Instead, we find that the motif appears randomly, supporting the mechanism of ex nihilo evolution of novel motifs. In support of this, other threonine-based motifs, although frequent, are nonconserved in the linker, pointing to additional functions connected to this region. We suggest that Dss1 acts as an adaptor protein that docks to Dma1 via the phosphorylated FHA-binding motifs, while the C-terminal α-helix is free to bind mitotic septins, thereby stabilizing the complex. The presence of Txx(D/E) motifs in the disordered regions of certain septin subunits may be of further relevance to the formation and stabilization of these complexes.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Ubiquitina-Proteína Ligases , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fosforilação , Ligação Proteica , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Commun Biol ; 3(1): 731, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273619

RESUMO

Dynamic interactions of proteins with lipid membranes are essential regulatory events in biology, but remain rudimentarily understood and particularly overlooked in membrane proteins. The ubiquitously expressed membrane protein Na+/H+-exchanger 1 (NHE1) regulates intracellular pH (pHi) with dysregulation linked to e.g. cancer and cardiovascular diseases. NHE1 has a long, regulatory cytosolic domain carrying a membrane-proximal region described as a lipid-interacting domain (LID), yet, the LID structure and underlying molecular mechanisms are unknown. Here we decompose these, combining structural and biophysical methods, molecular dynamics simulations, cellular biotinylation- and immunofluorescence analysis and exchanger activity assays. We find that the NHE1-LID is intrinsically disordered and, in presence of membrane mimetics, forms a helical αα-hairpin co-structure with the membrane, anchoring the regulatory domain vis-a-vis the transport domain. This co-structure is fundamental for NHE1 activity, as its disintegration reduced steady-state pHi and the rate of pHi recovery after acid loading. We propose that regulatory lipid-protein co-structures may play equally important roles in other membrane proteins.


Assuntos
Lipídeos/química , Trocador 1 de Sódio-Hidrogênio/química , Animais , Células CHO , Dicroísmo Circular , Cricetinae , Cricetulus , Humanos , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Trocador 1 de Sódio-Hidrogênio/metabolismo
3.
J Biomol NMR ; 73(12): 713-725, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31598803

RESUMO

Phosphorylation is one of the main regulators of cellular signaling typically occurring in flexible parts of folded proteins and in intrinsically disordered regions. It can have distinct effects on the chemical environment as well as on the structural properties near the modification site. Secondary chemical shift analysis is the main NMR method for detection of transiently formed secondary structure in intrinsically disordered proteins (IDPs) and the reliability of the analysis depends on an appropriate choice of random coil model. Random coil chemical shifts and sequence correction factors were previously determined for an Ac-QQXQQ-NH2-peptide series with X being any of the 20 common amino acids. However, a matching dataset on the phosphorylated states has so far only been incompletely determined or determined only at a single pH value. Here we extend the database by the addition of the random coil chemical shifts of the phosphorylated states of serine, threonine and tyrosine measured over a range of pH values covering the pKas of the phosphates and at several temperatures (www.bio.ku.dk/sbinlab/randomcoil). The combined results allow for accurate random coil chemical shift determination of phosphorylated regions at any pH and temperature, minimizing systematic biases of the secondary chemical shifts. Comparison of chemical shifts using random coil sets with and without inclusion of the phosphoryl group, revealed under/over estimations of helicity of up to 33%. The expanded set of random coil values will improve the reliability in detection and quantification of transient secondary structure in phosphorylation-modified IDPs.


Assuntos
Aminoácidos/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Ressonância Magnética Nuclear Biomolecular/métodos , Concentração de Íons de Hidrogênio , Fosforilação , Estrutura Secundária de Proteína , Serina/metabolismo , Temperatura , Treonina/metabolismo , Tirosina/metabolismo
4.
Nat Commun ; 10(1): 3489, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375679

RESUMO

Very little is known about how Ser/Thr protein phosphatases specifically recruit and dephosphorylate substrates. Here, we identify how the Na+/H+-exchanger 1 (NHE1), a key regulator of cellular pH homeostasis, is regulated by the Ser/Thr phosphatase calcineurin (CN). NHE1 activity is increased by phosphorylation of NHE1 residue T779, which is specifically dephosphorylated by CN. While it is known that Ser/Thr protein phosphatases prefer pThr over pSer, we show that this preference is not key to this exquisite CN selectivity. Rather a combination of molecular mechanisms, including recognition motifs, dynamic charge-charge interactions and a substrate interaction pocket lead to selective dephosphorylation of pT779. Our data identify T779 as a site regulating NHE1-mediated cellular acid extrusion and provides a molecular understanding of NHE1 substrate selection by CN, specifically, and how phosphatases recruit specific substrates, generally.


Assuntos
Calcineurina/metabolismo , Proteínas Recombinantes/metabolismo , Trocador 1 de Sódio-Hidrogênio/metabolismo , Ácidos/metabolismo , Calcineurina/isolamento & purificação , Calcineurina/ultraestrutura , Membrana Celular/metabolismo , Cristalografia por Raios X , Homeostase , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Ligação Proteica , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/ultraestrutura , Trocador 1 de Sódio-Hidrogênio/isolamento & purificação , Trocador 1 de Sódio-Hidrogênio/ultraestrutura , Especificidade por Substrato
5.
Methods Enzymol ; 611: 193-226, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30471688

RESUMO

NMR spectroscopy has proven to be a key method for studying intrinsically disordered proteins (IDPs). Nonetheless, traditional NMR methods developed for solving structures of ordered protein complexes are insufficient for the full characterization of dynamic IDP complexes, where the energy landscape is broader and more rugged. Furthermore, due to their high sensitivity to environmental changes, NMR studies of IDP complexes must be conducted with extra care and the observed NMR parameters thoroughly evaluated to enable disentanglement of binding events from ensemble distribution changes. In this chapter, written for the non-NMR expert, we start out by outlining sample preparation for IDP complexes, guide through the recording and evaluation of diagnostic 1H,15N-HSQC spectra, and delineate more sophisticated NMR strategies to follow for the particular type of complex. The most relevant experiments are then described in terms of aims, needs, pitfalls, analysis, and expected outcomes, with references to recent examples.


Assuntos
Proteínas Intrinsicamente Desordenadas/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Animais , Humanos , Proteínas Intrinsicamente Desordenadas/química , Ligantes , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas/métodos
6.
Cell Rep ; 25(4): 862-870, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30355493

RESUMO

Dss1 (also known as Sem1) is a conserved, intrinsically disordered protein with a remarkably broad functional diversity. It is a proteasome subunit but also associates with the BRCA2, RPA, Csn12-Thp1, and TREX-2 complexes. Accordingly, Dss1 functions in protein degradation, DNA repair, transcription, and mRNA export. Here in Schizosaccharomyces pombe, we expand its interactome further to include eIF3, the COP9 signalosome, and the mitotic septins. Within its intrinsically disordered ensemble, Dss1 forms a transiently populated C-terminal helix that dynamically interacts with and shields a central binding region. The helix interfered with the interaction to ATP-citrate lyase but was required for septin binding, and in strains lacking Dss1, ATP-citrate lyase solubility was reduced and septin rings were more persistent. Thus, even weak, transient interactions within Dss1 may dynamically rewire its interactome.


Assuntos
Proteínas Intrinsicamente Desordenadas/metabolismo , Mapeamento de Interação de Proteínas , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , ATP Citrato (pro-S)-Liase/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Proteínas Intrinsicamente Desordenadas/química , Mitose , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas de Schizosaccharomyces pombe/química , Septinas/metabolismo
7.
Cell Signal ; 37: 40-51, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28554535

RESUMO

Intrinsically disordered proteins (IDPs) are involved in many pivotal cellular processes including phosphorylation and signalling. The structural and functional effects of phosphorylation of IDPs remain poorly understood and difficult to predict. Thus, a need exists to identify motifs that confer phosphorylation-dependent perturbation of the local preferences for forming e.g. helical structures as well as motifs that do not. The disordered distal tail of the Na+/H+ exchanger 1 (NHE1) is six-times phosphorylated (S693, S723, S726, S771, T779, S785) by the mitogen activated protein kinase 2 (MAPK1, ERK2). Using NMR spectroscopy, we found that two out of those six phosphorylation sites had a stabilizing effect on transient helices. One of these was further investigated by circular dichroism and NMR spectroscopy as well as by molecular dynamic simulations, which confirmed the stabilizing effect and resulted in the identification of a short linear motif for helix stabilisation: [S/T]-P-{3}-[R/K] where [S/T] is the phosphorylation-site. By analysing IDP and phosphorylation site databases we found that the motif is significantly enriched around known phosphorylation sites, supporting a potential wider-spread role in phosphorylation-mediated regulation of intrinsically disordered proteins. The identification of such motifs is important for understanding the molecular mechanism of cellular signalling, and is crucial for the development of predictors for the structural effect of phosphorylation; a tool of relevance for understanding disease-promoting mutations that for example interfere with signalling for instance through constitutive active and often cancer-promoting signalling.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Trocador 1 de Sódio-Hidrogênio/química , Humanos , Simulação de Dinâmica Molecular , Fosforilação , Estabilidade Proteica , Estrutura Secundária de Proteína
8.
BMC Biol ; 14: 31, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27083547

RESUMO

BACKGROUND: Extracellular signal-regulated kinase 2 (ERK2) is an S/T kinase with more than 200 known substrates, and with critical roles in regulation of cell growth and differentiation and currently no membrane proteins have been linked to ERK2 scaffolding. METHODS AND RESULTS: Here, we identify the human Na(+)/H(+) exchanger 1 (hNHE1) as a membrane scaffold protein for ERK2 and show direct hNHE1-ERK1/2 interaction in cellular contexts. Using nuclear magnetic resonance (NMR) spectroscopy and immunofluorescence analysis we demonstrate that ERK2 scaffolding by hNHE1 occurs by one of three D-domains and by two non-canonical F-sites located in the disordered intracellular tail of hNHE1, mutation of which reduced cellular hNHE1-ERK1/2 co-localization, as well as reduced cellular ERK1/2 activation. Time-resolved NMR spectroscopy revealed that ERK2 phosphorylated the disordered tail of hNHE1 at six sites in vitro, in a distinct temporal order, with the phosphorylation rates at the individual sites being modulated by the docking sites in a distant dependent manner. CONCLUSIONS: This work characterizes a new type of scaffolding complex, which we term a "shuffle complex", between the disordered hNHE1-tail and ERK2, and provides a molecular mechanism for the important ERK2 scaffolding function of the membrane protein hNHE1, which regulates the phosphorylation of both hNHE1 and ERK2.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte de Cátions/química , Linhagem Celular , Ativação Enzimática , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteína Quinase 1 Ativada por Mitógeno/química , Proteína Quinase 3 Ativada por Mitógeno/química , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Dobramento de Proteína , Mapas de Interação de Proteínas , Estrutura Terciária de Proteína , Trocador 1 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/química
9.
Curr Top Membr ; 73: 69-148, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24745981

RESUMO

Mammalian Na⁺/H⁺ exchangers of the SLC9A family are widely expressed and involved in numerous essential physiological processes. Their primary function is to mediate the 1:1 exchange of Na⁺ for H⁺ across the membrane in which they reside, and they play central roles in regulation of body, cellular, and organellar pH. Their function is tightly regulated through mechanisms involving interactions with multiple protein and lipid-binding partners, phosphorylations, and other posttranslational modifications. Biochemical and mutational analyses indicate that the SLC9As have a short intracellular N-terminus, 12 transmembrane (TM) helices necessary and sufficient for ion transport, and a C-terminal cytoplasmic tail region with essential regulatory roles. No high-resolution structures of the SLC9As exist; however, models based on crystal structures of the bacterial NhaAs support the 12 TM organization and suggest that TMIV and XI may form a central part of the ion-translocation pathway, whereas pH sensing may involve TMII, TMIX, and several intracellular loops. Similar to most ion transporters studied, SLC9As likely exist as coupled dimers in the membrane, and this appears to be important for the well-studied cooperativity of H⁺ binding. The aim of this work is to summarize and critically discuss the currently available evidence on the structural dynamics, regulation, and binding partner interactions of SLC9As, focusing in particular on the most widely studied isoform, SLC9A1/NHE1. Further, novel bioinformatic and structural analyses are provided that to some extent challenge the existing paradigm on how ions are transported by mammalian SLC9As.


Assuntos
Membrana Celular/metabolismo , Mamíferos , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Multimerização Proteica , Estrutura Quaternária de Proteína , Transporte Proteico
10.
Biochemistry ; 50(17): 3469-80, 2011 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-21425832

RESUMO

Intrinsic disorder is important for protein regulation, yet its role in regulation of ion transport proteins is essentially uninvestigated. The ubiquitous plasma membrane carrier protein Na(+)/H(+) Exchanger isoform 1 (NHE1) plays pivotal roles in cellular pH and volume homeostasis, and its dysfunction is implicated in several clinically important diseases. This study shows, for the first time for any carrier protein, that the distal part of the C-terminal intracellular tail (the cdt, residues V686-Q815) from human (h) NHE1 is intrinsically disordered. Further, we experimentally demonstrated the presence of a similar region of intrinsic disorder (ID) in NHE1 from the teleost fish Pleuronectes americanus (paNHE1), and bioinformatic analysis suggested ID to be conserved in the NHE1 family. The sequential variation in structure propensity as determined by NMR, but not the amplitude, was largely conserved between the h- and paNHE1cdt. This suggests that both proteins contain molecular recognition features (MoRFs), i.e., local, transiently formed structures within an ID region. The functional relevance of the most conserved MoRF was investigated by introducing a point mutation that significantly disrupted the putative binding feature. When this mutant NHE1 was expressed in full length NHE1 in AP1 cells, it exhibited impaired trafficking to the plasma membrane. This study demonstrated that the distal regulatory domain of NHE1 is intrinsically disordered yet contains conserved regions of transient structure. We suggest that normal NHE1 function depends on a protein recognition element within the ID region that may be linked to NHE1 trafficking via an acidic ER export motif.


Assuntos
Proteínas de Transporte de Cátions/química , Trocadores de Sódio-Hidrogênio/química , Motivos de Aminoácidos , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Biologia Computacional , Sequência Conservada , Proteínas de Peixes/química , Linguado , Glicosilação , Humanos , Dados de Sequência Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Transporte Proteico , Espalhamento a Baixo Ângulo , Alinhamento de Sequência , Trocador 1 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Especificidade da Espécie , Difração de Raios X
11.
J Biol Chem ; 285(45): 35079-91, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-20807768

RESUMO

Galectins are defined by a conserved ß-galactoside binding site that has been linked to many of their important functions in e.g. cell adhesion, signaling, and intracellular trafficking. Weak adjacent sites may enhance or decrease affinity for natural ß-galactoside-containing glycoconjugates, but little is known about the biological role of this modulation of affinity (fine specificity). We have now produced 10 mutants of human galectin-3, with changes in these adjacent sites that have altered carbohydrate-binding fine specificity but that retain the basic ß-galactoside binding activity as shown by glycan-array binding and a solution-based fluorescence anisotropy assay. Each mutant was also tested in two biological assays to provide a correlation between fine specificity and function. Galectin-3 R186S, which has selectively lost affinity for LacNAc, a disaccharide moiety commonly found on glycoprotein glycans, has lost the ability to activate neutrophil leukocytes and intracellular targeting into vesicles. K176L has increased affinity for ß-galactosides substituted with GlcNAcß1-3, as found in poly-N-acetyllactosaminoglycans, and increased potency to activate neutrophil leukocytes even though it has lost other aspects of galectin-3 fine specificity. G182A has altered carbohydrate-binding fine specificity and altered intracellular targeting into vesicles, a possible link to the intracellular galectin-3-mediated anti-apoptotic effect known to be lost by this mutant. Finally, the mutants have helped to define the differences in fine specificity shown by Xenopus, mouse, and human galectin-3 and, as such, the evidence for adaptive change during evolution.


Assuntos
Galactosídeos/metabolismo , Galectina 3/metabolismo , Mutação de Sentido Incorreto , Ativação de Neutrófilo/fisiologia , Neutrófilos/metabolismo , Substituição de Aminoácidos , Animais , Galactosídeos/genética , Galectina 3/genética , Galectina 3/farmacologia , Humanos , Camundongos , Ativação de Neutrófilo/efeitos dos fármacos , Especificidade por Substrato , Xenopus laevis
12.
Protein Sci ; 19(8): 1555-64, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20556825

RESUMO

Structural characterization of intrinsically disordered proteins (IDPs) is mandatory for deciphering their potential unique physical and biological properties. A large number of circular dichroism (CD) studies have demonstrated that a structural change takes place in IDPs with increasing temperature, which most likely reflects formation of transient alpha-helices or loss of polyproline II (PPII) content. Using three IDPs, ACTR, NHE1, and Spd1, we show that the temperature-induced structural change is common among IDPs and is accompanied by a contraction of the conformational ensemble. This phenomenon was explored at residue resolution by multidimensional NMR spectroscopy. Intrinsic chemical shift referencing allowed us to identify regions of transiently formed helices and their temperature-dependent changes in helicity. All helical regions were found to lose rather than gain helical structures with increasing temperature, and accordingly these were not responsible for the change in the CD spectra. In contrast, the nonhelical regions exhibited a general temperature-dependent structural change that was independent of long-range interactions. The temperature-dependent CD spectroscopic signature of IDPs that has been amply documented can be rationalized to represent redistribution of the statistical coil involving a general loss of PPII conformations.


Assuntos
Peptídeos/química , Estrutura Secundária de Proteína , Temperatura , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Dicroísmo Circular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Humanos , Ressonância Magnética Nuclear Biomolecular , Espalhamento a Baixo Ângulo , Trocador 1 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...